
OWLER: PRELIMINARY RESULTS FOR BUILDING
A COLLABORATIVE OPEN WEB CRAWLER

M. Dinzinger∗, S. Zerhoudi,
M. Al-Maamari, M. Istaiti,
J. Mitrović, M. Granitzer,

University of Passau, Passau, Germany

Abstract
In the rapidly evolving digital landscape, the need for effi-

cient and effective web crawling mechanisms is more crucial
than ever. Web crawlers are instrumental in discovering and
indexing new content, and their role in areas such as search
engine optimization, data mining, and web archiving is indis-
pensable. However, current distributed crawling frameworks
face significant challenges in terms of topic-based content
discovery and categorization. This paper presents novel
extensions to the StormCrawler and URLFrontier frame-
works to enhance web crawling efficiency and relevance. The
OWler, a derivative of the StormCrawler, is extended with
classification functionalities, including topic identification
and thus enabling the production of topic-specific WARC
files using multiple writing streams. Concurrently, the URL-
Frontier framework is extended to enable web crawlers to
retrieve URLs based on topic interests. To put it in a nutshell,
these extensions allow us to build a highly distributed net-
work of heterogeneous web crawlers, which are nevertheless
efficiently collaborating over a shared crawl space.

INTRODUCTION
As the digital landscape continues to evolve, the need for

efficient web data acquisition becomes increasingly promi-
nent. We currently experience an urgent demand for data
which empowers researchers and businesses in Europe and
around the world. However, tapping the web as a resource
is technically challenging and requires considerable upfront
investment in infrastructure and the recruitment of highly
skilled professionals. In this light, the consortium of the
OpenWebSearch.eu project has pooled their resources and
expertise with the aim of democratizing access to web infor-
mation, currently controlled by a small group of gatekeepers,
and thereby unlocking the potential for a broader community
of European innovators.

Open Web Index
The common objective of the project participants is to

establish an Open Web Index (OWI) and foster an ecosystem
around it [7]. Central to this ambition is the advocacy for
an open search engine market and the offering of a genuine
choice to users. Furthermore, the Web Index provides an
avenue for the development of diverse web-data products
which go beyond the scope of web search and target e.g.,
research in the flourishing AI domain. The creation and
∗ michael.dinzinger@uni-passau.de

maintenance of the OWI adhere to Open Data principles
and legal compliance, and require a decentralized structure
among multiple European institutions.

Web crawling
An important part of this effort is the collection of web

content through crawling. A web crawler is a tool designed
for systematically downloading an extensive number of web-
pages. Its specific software architecture varies considerably
depending on the intended use of the software [2].

Our crawling system is characterized by a collaborative
crawling strategy. We have opted for a distributed architec-
ture which consists of multiple heterogeneous worker nodes
in different remote computing sites. The crawling nodes
communicate with a central, controlling component, the
URL Frontier. This design diverges from other state-of-the-
art distributed crawling systems, such as Apache Nutch [11]
or BUbiNG [2], which are built upon a single software solu-
tion and threfore assume a single-machine setup or structural
uniformity among the cooperating agents.

In this context, we have developed the OWler (Open Web
Crawler), an incremental and distributed web crawler. It
is highly customizable, yet primarily tailored for extensive
data acquisition with the purpose of building a Web Index.
The OWler collects webpages that align with its scope of
interest and documents its fetch activities in the WARC file
format. It is further augmented by our integration of a topic
classification model for more specific content categorization.
Furthermore, the usage of the URL Frontier framework as a
central component enables seamless collaboration among
multiple geographically distributed crawlers [15]. It main-
tains the known and to-be-fetched URLs, and divides the
crawl space among the worker nodes based on their scope
of interest.

In the remaining sections of this paper, we will present
the OWler and delve into our approach to web crawling. Sec-
tion 2 provides an overview of related work in this field and
Section 3 describes the existing frameworks which underpin
our approach. Our main contributions are outlined in Sec-
tion 4, which details the enhancements made to the OWler.
Section 5 evaluates the applicability of our crawling system
in a real-world setup and Section 6 concludes the paper, with
an outlook to future directions of our work.

RELATED WORK
The domain of web crawling dates back to the origins of

the world wide web itself. Concurrent to the rise of the mod-



ern internet in early 1990s, tools and techniques for efficient
web search became necessary. So throughout the following
years, search engine operators and reseachers worked on
software tools for the efficient traversal of the web. Due
to a wide range of research endeavors, crawling systems
have continously improved on its four main quality criteria:
coverage and freshness, politeness and robustness.

Thereby, a number of technical challenges have been
tackled, such as the near duplication detection of web doc-
uments [5, 14], the de-duplication of URLs [1] and the
queue-based scheduling mechanism for webpages [18]. This
scheduling mechanism is often implemented as Frontier and
prioritizes URLs depending on the webpage quality, while
ensuring politeness towards web servers.

Several notable web crawlers have been developed over
the years. Mercator, described in Najork et al. (2002), was
one of the first commercial open-source crawlers developed
by IBM that targeted high-performance and introduced the
“frontier” data structure [18]. Heritrix and the open-source
crawler Apache Nutch were further early web crawlers that
were extensively used and studied [11, 17]. IRLbot was a
pioneering effort in scaling web crawling to handle billions
of webpages on a single-machine setup [13]. More recently,
the BUbiNG crawler was developed by the Laboratory of
Web Algorithmics as a next-generation dataset crawler, with
a public repository available for research use [2].

In the last 25 years, two web protocols have made a signif-
icant impact on the ethicality and efficiency of crawlers and,
thus, have become the informal standard among webmasters
and search engine operators. The Robots Exclusion Protocol
(REP) [10] encourages content owners to state access rules
for non-human visitors in a “robots.txt” file, which is placed
at the website’s root directory. However, the REP has no
direct legal relevance [19] and is only intended to restrict
disproportinate server traffic caused by robotic accesses [21].
Nevertheless, it is nowadays the most important mean for en-
suring politeness in web crawling and scraping activities. At
this point, we want to remark that in the future an extension
to the REP or a similar technical solution might be necessary
to impose fine-grained and legally binding restrictions, such
as licensing information, on publicly available web content.

The Sitemap Protocol originates from the idea of mak-
ing web servers more crawler-friendly which was initially
discussed by Brandman et al in 1999 [3] and jointly im-
plemented by Google, Yahoo and Microsoft as a common
initiative in 2006. Hereby, website admins expose a list of
URLs along with additional metadata called Sitemaps. This
simple monitoring mechanism helps to discover new pages
earlier and has a positive effect on the coverage and freshness
of Web Indices [20].

A further direction of research concerns the Focused
crawling, in which the crawler means to discover and
traverse only a specific part of the web. The term was
coined by Chakrabarti et al in 1999 [4] and, since then,
focused crawlers have been used in a number of application
cases [9, 16, 22]. In order to guide the crawler towards its
specific focus, machine learning algorithms for the catego-

rization of webpages are employed, including topic classifi-
cation, spam detection, and many more.

Finally, our work also leaded us to the question of legal
compliance of crawling activities. Relevant literature on
this topic can be found in Schellekens (2013), Gold (2018),
and Krotov (2020) [8, 12,19]. These publications examine
legal texts as well as court cases and draw the picture of a
non-uniform and rather uncertain legal landscape.

EXISTING FRAMEWORKS
This section describes the technical details on the software

setup of the Open Web Crawler.

StormCrawler
The OWler 1, a core component of our project, is a deriva-

tive of StormCrawler 2, a widely adopted and mature open-
source web crawler. This Java-based software framework
is both lightweight and scalable, underpinned by a distri-
bution layer based on Apache Storm 3. The StormCrawler
is designed to handle multiple fetcher threads to download
webpages in parallel. Nevertheless, it respect crawler ethics,
including the Robots Exclusion Protocol, and applies a po-
liteness delay. The decision to build upon the StormCrawler
was motivated by the following three reasons.

Firstly, thanks to the underlying Apache Storm platform,
the crawler overcomes the limitations of single-machine
systems. Consequently, the StormCrawler is able to obtain
high performance despite the usage of commodity hardware.
It therefore differentiates from many state-of-the-art crawlers
such as Heritrix [17] and BUbiNG [2] which were originally
designed for a single-machine setup. Another advantage of
the Storm distribution layer is the robust performance of the
worker nodes, benefiting from consistently high CPU and
network utilization. This is a marked improvement over the
batch-wise processing observed in systems such as Apache
Nutch, whose performance often suufers from periodic peaks
in CPU and network traffic.

Secondly, the StormCrawler framework endows the OWler
with a high degree of customizability. This characteristic is
crucial in meeting the broad spectrum of our requirements,
ranging from general-purpose discovery crawling to more
targeted, task-specific dataset crawling.

Lastly, StormCrawler’s open-source nature and active
community provide a wealth of resources and support. This
ensures that as we adapt and extend the crawler to meet our
specific needs, we are backed by a network of developers
who are continually improving the core software and who
can offer assistance or solutions when challenges arise.

URLFrontier
The frontier is a crawler component that monitors the sta-

tus of both crawled and to-be-crawled URLs. Within the
1 https://openwebsearch.eu/owler/, visited 05/31/2023
2 http://stormcrawler.net/, visited 05/31/2023
3 https://storm.apache.org/, visited 05/31/2023



structure of a collaborative crawling system, it takes the cen-
tral position in a star-shaped architecture. For our project,
we have built upon the existing URLFrontier framework in
the OpenSearch-based implementation 4. This open-source
software project defines an API 5 for facilitating communica-
tion between the frontier and the crawler. The StormCrawler
framework natively supports the URLFrontier programming
interface, and is able to retrieve and upload URLs from the
frontier with the API’s GetURLs and PutURLs command,
respectively.

The adoption of URLFrontier was motivated by the nature
of our crawling system, which is both heterogeneous and
highly distributed. With crawlers located in computing sites
across Europe, which can join or be removed arbitrarily,
the frontier functions as the central storage of URLs and
enables peer-to-peer crawling despite the large geographic
distances between the crawlers. Its performance is therefore
particularly crucial and should not be a bottleneck for the
crawling activities.

Moreover, the participating crawlers may differ in terms
of implementation, interests, and performance, while they
still have to communicate to the same central software com-
ponent. Consequently, leveraging an existing API, such as
the one defined in the URLFrontier project, proves beneficial
and allows us to accommodate these differences efficiently.

OWLER EXTENSIONS
This paper proposes a two-pronged approach to enhance

the efficiency and relevance of web crawling. First, we ex-
tend the StormCrawler framework with classification func-
tionality and, second, we modify the URLFrontier frame-
work to enable URL retrieval based on diverse parameters
such as topic, privacy policy presence, language, etc. Con-
sequently, the frontier can partition the crawling space on
a more fine-grained level, allow participating crawlers to
choose a more refined crawling strategy. In the end, both
extensions can be combined and leverage a collaborative
crawling system, which allows crawlers to focus on its scope
of interest, and divides the crawl space accordingly.

OWler StormCrawler
The StormCrawler framework is a robust and scalable

tool for web crawling. However, it lacks a mechanism for
the immediate content categorization of newly discovered.
To address this, we propose the addition of enhanced URL
classification functionalities to the framework and show our
contribution for the case of topic-based URL categorization.
This new mechanism for the categorization of newly discov-
ered URLs complements the already existing functionalities
for classifying fetched and parsed web content.

The classification process is driven by a machine learning
model trained on an extensive corpus of web content, capa-
ble of identifying a broad range of topics or criteria with

4 https://github.com/PresearchOfficial/
opensearch-frontier, visited 05/31/2023

5 http://urlfrontier.net, visited 05/31/2023

considerable accuracy. The used dataset and classification
model have been developed concurrently to this work and are
presented by Al-Maamari et al [submitted to OSSYM2023].

Once the fetched web content is categorized, the crawler
produces WARC files that are organized based on the identi-
fied topics. This is achieved using multiple writing streams,
with each stream dedicated to a specific topic. This approach
not only enhances the efficiency of the crawling process but
also facilitates easy retrieval and analysis of the crawled
content

OWler URLFrontier
The URLFrontier framework takes the central position in

our distributed system and communicates to all participating
crawlers. Via the GetURLs command, a crawler retrieves the
next URLs to fetch. The PutURLs command is used by the
crawlers to inform the frontier whether a fetch was successful
or erroneous and to propagate newly discovered URLs to
the central storage. However, the existing framework does
not support parameter-based URL retrieval and partitions
the crawl space among the worker nodes only with the help
of a simple consistent hashing algorithm.

To address these shortcomings, we suggest an extension
to the URLFrontier framework that enables web crawlers to
retrieve URLs based on their scope of interest. Each crawler
is connected to a Frontier service, which takes the man-in-
the-middle position between the crawler and the actual URL
storage, in our case an OpenSearch index. The Frontier
service is initialized with a specific interest, e.g., the set
of all benign webpages in English language. Subsequently,
it only retrieves the URLs from the shared index, which
lays within its scope, and offers them to the crawler. Hence,
the Frontier services divide the crawl space based on their
different scopes. In case several services have the same focus,
the crawl space is divided evenly among them. Note that
the Frontier services have an important role as they serve
as buffer and abstraction layer between the crawlers and the
concrete backend which persists the URLs alongside with
corresponding metadata. Moreover they are crucial as the
crawlers express their interest not directly, but through the
frontier service that they are connected to.

The extension of the URLFrontier framework goes hand
in hand the OWler extension of StormCrawler. The enhanced
classification functionalities within the crawler allow to en-
rich the URL with essential metadata, such as the topic, the
language, the webpage category (like Sitemap, Privacy Pol-
icy, Terms of Use, etc). Thanks to our OWler extensions
on the StormCrawler framework, these metadata parameters
can be immediately computed within the crawler, as long as
only the URL and not the page content is required for the
categorization. Subsequently, the frontier uses the additional
parameters for a more fine-grained retrieval of URLs. While
previous approaches have focused solely on topic-oriented
or geographically focused collaborative crawling, our goal
is to partition the web considering diverse criteria, such as
regions, topics, webpage categories, and many more.



This approach markedly improves the relevance of the
crawled content, as the web crawler is more likely to retrieve
content aligning with its specific interests. It also enhances
the efficiency of the crawling process, as the crawler spends
less time crawling irrelevant content. Additionally, with the
integration of blacklisted URLs and spam filtering mecha-
nisms, we can further optimize the crawling process.

OWLER IN ACTION
This section evaluates the OWler in the wild. We therefore

run an experimental crawl on about 1.37M seed URLs over
the time period of twelve hours. This small evaluation wants
to showcase the applicability and the benefits of the OWler’s
collaborative crawling strategy. The used seed URLs are a
random sample from a recent CommonCrawl (CC) dump.
Note that a CC dump gives no guarantee on a fair or even
distribution of URLs, so the set of seed URLs could possibly
be biased in any direction.

The distributed setup consists of three crawlers. To be-
gin with, a general-purpose crawler is interested in all be-
nign web content. The second crawler in the experimen-
tal setup has the task of creating a dataset for spam de-
tection and is therefore interested in web content, whose
URLs indicate malicious content. Thirdly, a Sitemap crawler
only retrieves URLs, which are tagged with the correspond-
ing "isSitemap" metadata field. The discovery of URLs
through Sitemaps contributes to a high coverage and fresh-
ness in the Web Index and is a good complement to the solely
hyperlink-based discovery approach of classical crawlers.
All three workers are connected to a central frontier, which
controls and monitors the progress. The frontier as well
as the crawlers are extended with the OWler modifications,
described in Section 4.

Figure 1: Increase of URLs in the experimental crawl.

The crawlers’ topics of interest, Benign, Malicious and
Sitemaps, divide the crawl space in three non-overlapping
sections. Figure 1 compares the quantity and relative distri-
bution between seed URLs and the discovered links regard-
ing these three categories plus a fourth category with other

URLs 6. At first glance, we recognize that the proportions
of the sections shift significantly. Whereas the initial mix of
URLs contains a vast majority of benign webpages, an dis-
proportionate number of links are discovered, whose URLs
indicate malicious content. This observation is a hint on
the importance of Focused crawling. The results in Figure 1
suggest that a set of unfocused crawlers would eventually
drift off from the benign part of the web towards undesir-
able content, diminishing the quality of the final Web Index.
It underlines once more the necessity of well-functioning
classification functionalities in a crawler system, identifying
malicious web content early in the process, and therefore
motivates our OWler extension to the StormCrawler frame-
work.

In summary, over 27.7M links have been discovered by
the three crawlers. Thereof, 437,992 webpages have been
fetched 7. The performant general-purpose crawler has
fetched the most webpages (337,224) and thereby discovered
over 13.6M new URLs. The sitemap crawler has discovered
the most new links per fetch, 56.6 on average. The dataset
crawler profits from a high value of topic locality [6]. Over
86.5 % of the discovered URLs are tagged as Malicious
and therefore lay again in its scope of interest.

With the help of the shared URL Frontier, each node
is contributing to the increase of the crawl space of all its
peer workers. This transfer of out-of-scope URLs leads to a
mutual benefit and becomes visible in Figure 2, where the
relative distribution of discovered links is denoted based on
the four before-mentioned categories. The corresponding
absolute numbers are listed in Table 1.

For example, this positive effect is observable in the syn-
ergy between the general-purpose and the dataset crawler.
The first of these two encounters over 2.8M malicious URLs
(20.3 %), which are to be avoided from its perspective, but of
interest for the dataset crawler. Also in the other way around,
the dataset crawler discovers benign URLs, which are of no
further use for it and which are eventually transferred to its
peer crawler.

Furthermore, Figure 2 attests a high degree of efficiency
to Sitemap crawling in the bespoken peer-to-peer setup. The
Sitemap crawler has fetched 155,276 web documents and
8.7M of the 8.9M discovered links (97.2 %) are not Sitemaps
anymore, but point to HTML web content. The general-
purpose and the dataset crawler have discovered Sitemaps
for 160,628 domains, whereas a Sitemap crawler is natively
not able to discover URLs outside the anchor domain 8 and
therefore relies on the help of its peer workers in terms of
discovery of new Sitemaps.

From the experiences, that we were allowed to gather so
far, the StormCrawler together with the OWler extensions is

6 The fourth category Others contains adult and advertisement webpages,
which are classified as neither benign nor malicious.

7 Note that due to the restricted scale of the crawl not all seed URLs have
been fetched.

8 A cross-domain reference of Sitemaps is for example possible, when the
Sitemaps of a website are hosted by a third party service.



Figure 2: Distribution of discovered URLs by the three
crawlers.

General-purpose
crawler

Dataset
crawler

Sitemap
crawler

Benign 10,331,474 536,783 2,794,105

Malicious 2,844,466 4,349,835 5,687,672

Sitemaps 289,543 82,628 246,265

Others 554,804 57,116 219,801

Table 1: Distribution of discovered URLs by the three
crawlers in numbers.

able to consistently fetch up to 100 pages per second 9. At
this speed, a single crawler produces approximately 200GB
of WARC files per day. These numbers refer to a Storm-
Crawler configuration with 200 fetcher threads and four parse
threads. Further experiments will allow us to work on the
topology configuration, eliminate bottlenecks and improve
the OWler performance further.

CONCLUSION AND FUTURE WORK
Motivated by the OpenWebSearch.eu project, our endeav-

ors circle around the challenge of efficient and scalable web
data acquisition. Our work and its preliminary results target
first and foremost the OWler. The derivative of the Storm-
Crawler has proven highly capable from a technical per-
spective and serves us as groundwork for customization and
extensions. To begin with, we integrated a classification
model in the crawling pipeline, which categorizes URLs
immediately after they have been discovered. This small
contribution is a first step towards a much bigger goal. We
want to enrich fetched web content and discovered links with
more metadata, to be able to steer the crawl with higher ac-
curacy and ensure high quality of the desired end product,
the Open Web Index.

9 Within the experimental setup, the crawling speed was reduced to one-
tenth, leading to approximately 10 pages per seconds.

The OWler extensions on the StormCrawler go hand in
hand with the modifications on the URLFrontier framework.
This software component keeps track of the crawl status of
all discovered web resources and provides the worker nodes
with next URLs to fetch. With the help of our contribu-
tion, crawlers are able to express their interests and only
receive URLs within this predefined scope, which can be
defined by a variety of criteria, such as regions, topics, web-
page categories. This extension goes beyond the hash-based
partitioning of the crawl space and targets a more generic
approach to collaborative crawling.

A collaborative strategy appears to be most suiting with
respect to the prevailing setup, which is highly distributed
and rather heterogeneous. First tests confirm this assumption
and show promising results. Several StormCrawler nodes
as well as a single frontier cooperate efficiently in a shared
crawl. As the observations in Section 5 suggest, the peer
crawlers mutually profit from each other due to the discovery
and transfer of out-of-scope URLs.

Future efforts will concern the further conceptual re-
finement, performance engineering and scaling of our dis-
tributed peer-to-peer OWler setup. Additionally, a more
comprehensive evaluation of the crawling strategy is neces-
sary to generate deeper, more reliable insights on its perfor-
mance. This evaluation also includes the software compo-
nents, which we want to extend by new features, such as the
extensive parsing and processing of structured data in web
documents.

Additionally, we want to set a particular focus on the
topic of legal compliance in the domain of web crawling.
Several research questions arise, such as (1) in which ways
are copyright and licensing statements on web data objects
expressed, (2) do the existing mechanisms guaratee machine-
readability and are they sufficient to meet the requirements in
the upcoming AI era, and (3) how can we ensure compliance
to the content owners’ rights, from crawling to indexing.

ACKNOWLEDGEMENT
This work is part of the OpenWebSearch.eu
project, funded by the EU under the GA
101070014, and part of the CAROLL
project, funded by the German Federal Min-
istry of Education and Research (BMBF)
under the funding code 01|S20049.

REFERENCES
[1] Z. Bar-Yossef, I. Keidar, U. Schonfeld, Do Not Crawl in the

DUST: Different URLs with Similar Text, ACM Trans. Web,
NY, USA, 2009, pp. 380–388.

[2] P. Boldi, A. Marino, M. Santini, S. Vigna, BUbiNG: Massive
Crawling for the Masses, ACM Trans. Web 12 (2), May 2018.

[3] O. Brandman, J. Cho, H. Garcia-Molina, N. Shivakumar,
Crawler-Friendly Web Servers, SIGMETRICS Perform. Eval.
Rev. 28 (2), NY, USA, Sep. 1999, pp. 9–14.

[4] S. Chakrabarti, M. van den Berg, B. Dom, Focused crawl-
ing: a new approach to topic-specific Web resource discovery,
Computer Networks 31 (11-16), 1999, pp. 1623–1640.



[5] M. Charikar, Similarity Estimation Techniques from Rounding
Algorithms, Proceedings of the 34th Annual ACM Symposium
on Theory of Computing, NY, USA, 2002, pp. 380–388.

[6] C. Chung, C. Clarke, Topic-oriented collaborative crawling,
Proceedings of the 11th International Conference on Infor-
mation and Knowledge Management (CIKM ’02), NY, USA,
2002, pp. 34–42.

[7] M. Granitzer et al, Impact and development of an Open Web
Index for open web search, Journal of the Association for
Information Science and Technology, Aug. 2023.

[8] Z. Gold, M. Latonero, Robots Welcome? Ethical and Legal
Considerations for Web Crawling and Scraping, 13 WASH. J.
L. TECH. & ARTS 275, 2018.

[9] A. Juffinger, T. Neidhart, A. Weichselbraun, G. Wohlgenannt,
M. Granitzer, R. Kern, A. Scharl, Distributed Web2.0 crawling
for ontology evolution, 2nd International Conference on Digital
Information Management (2), 2007, pp. 615–620.

[10] M. Koster, G. Illyes, H. Zeller, L. Sassman, Robots Exclusion
Protocol, IETF RFC 9309, Sep. 2022.

[11] R. Khare, D. Cutting, K. Sitaker, A. Rifkin, Nutch: A Flexible
and Scalable Open-Source Web Search Engine, 2005.

[12] V. Krotov, L. Johnson, L. Silva, Tutorial: Legality and Ethics
of Web Scraping, Communications of the Association for In-
formation Systems 47, 2020.

[13] H. Lee, D. Leonard, X. Wang, D. Loguinov, IRLbot: Scal-
ing to 6 Billion Pages and Beyond, Proceedings of the 17th
International Conference on World Wide Web, New York, NY,
USA, 2008, pp. 427–436.

[14] G. S. Manku, A. Jain, A. Das Sarma, Detecting Near-
Duplicates for Web Crawling, Proceedings of the 16th Interna-

tional Conference on World Wide Web, NY, USA, 2007, pp.
141–150.

[15] C. Manning, P. Raghavan, H. Schütze, Crawling (Chapter
20.2), In: Introduction to Information Retrieval, Cambridge
University Press, USA, 2008.

[16] R. Meusel, P. Mika, R. Blanco, Focused Crawling for Struc-
tured Data, Proceedings of the 23rd ACM International Confer-
ence on Information and Knowledge Management, NY, USA,
2014, pp. 1039–1048.

[17] G. Mohr, M. Kimpton, M. Stack, I. Ranitovic, Introduction
to Heritrix, an archival quality web crawler, Proceedings of
the 4th International Web Archiving Workshop (IWAW’04),
Bath, UK, Jul. 2004.

[18] M. Najork, A. Heydon, High-Performance Web Crawling,
Handbook of Massive Data Sets. Massive Computing (4),
Springer, Boston, MA, USA, 2002.

[19] M. H. M. Schellekens, Are internet robots adequately regu-
lated?, Computer Law & Security Review 29 (6), 2013, pp.
666–675.

[20] U. Schonfeld, N. Shivakumar, Sitemaps: Above and Beyond
the Crawl of Duty, Proceedings of the 18th International Con-
ference on World Wide Web, NY, USA, 2009, pp. 991–1000.

[21] Y. Sun, I. Councill, C. Giles, The Ethicality of Web Crawlers,
2010 IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology, Toronto, ON,
Canada, 2010, pp. 668–675.

[22] R. Zowalla, T. Wetter, D. Pfeifer, Crawling the German
Health Web: Exploratory Study and Graph Analysis, Journal
of Medical Internet Research 22 (7), Jul. 2020.


