
OWLER:
A DISTRIBUTED OPEN WEB CRAWLER

M. Dinzinger∗, S. Zerhoudi,
J. Mitrović, M. Granitzer,

University of Passau, Passau, Germany

Abstract
The public availability of web data has become a main

driver for innovation in the domains of Artificial Intelligence
and Web Search. In this course, we have proposed the Open
Web Index (OWI), a publicly funded service for providing
enriched and indexed web documents to foster the develop-
ment of new search applications and data products. This
mission requires, among others, a comprehensive, contin-
uous crawling effort, based on the cornerstone principles
of openness and legal compliance. In order to overcome
the posed technical challenge, we have further presented
the Open Web Crawler (OWLer) [4], an open-source soft-
ware framework driving the large-scale collection of web
documents.1

OWLer constitutes the backbone of a fully integrated pro-
cessing pipeline for indexing and sharing large amounts of
curated web resources. Due to the ambitious vision of OWI
as well as the geographic dispersion of the therefore available
compute resources, the crawling system requires to be highly
distributed and collaborative. Technically, OWLer bases on
open-source projects such as StormCrawler, OpenSearch
and the URLFrontier framework. Our work is an aggrega-
tion and refinement to existing efforts in open-source web
crawling in order to accommodate the combined require-
ments of scalability, efficiency and transparency. In this
paper, we present the conceptual and technical background,
discuss design decisions and overview the architecture of
the OWLer crawling system.

INTRODUCTION
The dominance of a few commercial search engines has

led to a closed web search ecosystem where publishers must
optimize their content for these gatekeepers, potentially sac-
rificing quality and hindering innovation [5]. To counter this,
we have proposed the development of an Open Web Index
(OWI) as publicly funded infrastructure, guided by the core
principles of open data, legal compliance and collaborative
technology. The Open Web Crawler (OWLer), implemented
as distributed, incremental crawling system, takes a central
position in this joint development effort [6]. The intuition
of OWLer resembles the motivation behind the non-profit
organization Common Crawl.2

Whereas Common Crawl regularly publishes large-scale
collections of crawled web documents as well as complemen-
∗ michael.dinzinger@uni-passau.de
1 Link to open repositories:
https://opencode.it4i.eu/openwebsearcheu-public

2 https://commoncrawl.org

tary data products such as clean-text corpora and aggregated
web graphs, OWLer is crawling continuously on a federated
infrastructure. The collaboration of different European insti-
tutions and infrastructure providers is crucial for the success
of OWI and the encompassing crawling effort. The raw web
data collected by OWLer is integrated with the technical
pipeline for collaboratively building a rich web index. In
order to collect enough resources given the available struc-
tural setup, the system architecture is oriented towards two
major objectives:

• Modularity
The compute resources available for the project are
highly heterogeneous and dispersed over multiple data-
centers in Europe. In order to maintain such as a system
with manageable effort, it requires a compact and mod-
ular architecture employing well-defined interfaces for
the communication between remote services.

• Scalability
The ambitious vision of OWI necessites comprehensive
crawling covering a significant part of the text-based
surface web. No few-node cluster and no single Euro-
pean institution can take up this task on its own. The
required performance is rather grounded in the system’s
ability to scale horizontally, integrating more nodes lo-
cated in collaborating infrastructure providers.

This paper overviews OWLer by providing general and
technical background information on the design of the cur-
rent system. After taking a look into the related work, Sec-
tion 3 describes the distributed architecture in more detail
by presenting each of its three core software components.
We further share preliminary results of its current live de-
ployment (Section 4) and conclude with a resumée of the
main challenges in the previous development as well as an
outlook on the future development of OWLer.

RELATED WORK
The domain of web crawling dates back to the origins

of the world wide web in early 1990s. Throughout these
years, search engine operators and reseachers worked on
software tools for the efficient traversal of the web. Due
to a wide range of research endeavors, crawling systems
have continously improved on its four main quality crite-
ria: coverage and freshness, politeness and robustness [11].
Along the way, numerous technical challenges have been
studied and overcome, e.g., near-duplicate detection of web
documents [3, 10] and focused crawling [2].



Several notable software tools have been developed over
the years. Mercator, described in Najork et al. [13], was one
of the first commercial open-source crawlers that targeted
high-performance. Along with Mercator, Najork et al. intro-
duced the URL frontier (or URL manager). This software
component is implemented as multi-level queue-based data
structure and schedules URLs depending on some priority
criteria (e.g. web page quality), while ensuring politeness
towards web servers through request delays. Heritrix and
the open-source crawler Apache Nutch were further early
web crawlers that have been extensively used in academia
and industry [8, 12]. The IRLbot, published in 2008 [9],
was a pioneering effort in scaling open-source web crawling
to handle billions of web pages on a single-machine setup.
Similarly, UbiCrawler and its successor BUbiNG were de-
veloped by Boldi et al. [1] to achieve maximal throughput
on a single powerful machine. The crawling tool is able
to process several thousand pages per second, achieving
an optimized utilization of the hardware while respecting
politeness constraints.

SYSTEM COMPONENTS
The OWLer crawling system is designed to handle the

challenges of a highly heterogeneous and distributed infras-
tructure with machines of different sizes and locations. The
modular architecture consists of three loosely-coupled but
collaborating tiers, as shown in Figure 1. Each tier is a
self-contained software project and fulfills distinct, com-
plementary tasks. The implementation of crawlers and the
distributed database system can be interchanged due to well-
defined interfaces in the URL Frontier layer.

Figure 1: Three layers in the system architecture

Crawling
The first layer consists of software tools for continuously

fetching web pages without managing the set of discovered
links (crawl space), which is the task of the other two tiers.
A crawler instance retrieves URLs to be fetched through a
remote call to a URL Frontier instance and adds them to its
internal task queue (see Figure 2). The web pages are down-
loaded, parsed, and supplemented with meta information
corresponding to the page content. Finally, the URL and
discovered outlinks are uploaded back to the URL Frontier
instance, which updates the status of the crawl. The crawlers
are lightweight and can run on commodity-sized machines
in any computing center with sufficient external network
bandwidth.

Figure 2: Technical crawling pipeline

URL Frontier
A crawling node communicates only with the URL Fron-

tier instance, from which it retrieves and to which it uploads
web links (URL items). The communication between the
crawler and frontier nodes is implemented as remote calls
over a gRPC connection,3 resulting in a loose coupling be-
tween them. They rely on a well-defined Protocol Buffers 4

API in the URL Frontier project. The URL items exchanged
consist of the normalized plain-text URL, a unique identifier
(based on the URL hash), the partition key, and a set of tags.
The tags are extracted by the Content Parser or the URL
Parser, which internally call Parser Plugins. Tags can also
be provided by users through a social tagging system, poten-
tially contributing to a higher quality crawl by integrating
user-curated meta information during data collection.

The frontier tier comprises one or more instances (also
called services), each connected to one or more crawler
instances and one storage backend for persisting URL items.
Each URL Frontier service is assigned to a section of the
crawl space, defined as the set of discovered web links that
expands over time as the crawl continues.5 A single service is
responsible for its own partition of the crawl space, providing
its clients with the next URLs to be fetched while ensuring
a sufficient time interval between subsequent fetches of the
same resource.

As shown in Figure 2, URL items uploaded by the crawlers
are ingested and persisted. The first part of the frontier
ingestion pipeline filters and parses the URL, including the
execution of Parser Plugins. One exemplary Parser Plugin
with a significant positive impact on the system’s robustness
is the BlacklistFilter, which checks web links against

3 https://grpc.io
4 https://protobuf.dev
5 The border between the crawl space and the undiscovered web is also

called frontier, which is the source of the name URL Frontier.



a number of public spam databases. The ingestion pipeline
also includes the Scheduler component, which determines
the next planned fetch date of the web resource based on the
quality and change frequency of the page content.

Figure 3: Population of frontier data structure

The URL Frontier service constantly queries the storage
backend to populate its internal frontier data structure (see
Figure 3), while simultaneously ingesting incoming URLs.
A service can define an "interest" using a signature of tags,
which limits the set of web resources it fetches from the
backend. This allows for focused crawling within the overall
general crawling system. For example, some crawlers may
only be interested in sitemaps of family-friendly websites,
so the corresponding URL Frontier service only retrieves
web links tagged as Sitemap and FamilyFriendly.

To ensure strict politeness and high throughput, the fron-
tier’s internal data structure uses two stages of queues. The
first-stage queue is determined by the queue ID, which is
based on the hash of the Paid-Level Domain (PLD). Web
resources with the same PLD (shown as the same color in
Figure 3) are always kept in the same queue. Empty first-
stage queues are refilled to ensure a constant supply of links
to be fetched. In addition to matching the queue ID and the
scope of interest (represented by required tags), URL items
retrieved from the crawl space must have a nextFetchDate
in the past. This simple yet effective approach enforces a
time interval between two fetches of the same link.

The second-stage queue (or buffer queue) collects and
sends URL items to crawlers requesting new fetch tasks.
It is populated by iterating over the first-stage queues in
a Round Robin manner. A delay between each traversal
round prevents the buffer queue from being populated too
frequently with URL items having the same queue ID (and
possibly the same domain). OWLer defaults to a minimum
five-minute delay between subsequent rounds of buffer queue
population, and for each first-stage queue, only the first ten
items are popped and added to the buffer queue. The buffer
queue has a maximum capacity smaller than the number
of first-stage queues, ensuring that a crawler working in a
streaming manner will not visit pages with the same Paid-
Level Domain more than 20 times in five minutes. Each
crawler also applies a default crawl delay of 1 second (or as
specified in the robots.txt file) to avoid overwhelming a web
server at any given moment.

Persistence
The storage backend choice is crucial for the system’s

overall performance, as it is the main factor impacting the
latency of GetURLs and PutURLs requests. OWLer ini-
tially relied on the open-source Search & Analytics Platform
OpenSearch,6 which had certain drawbacks. An interface
was added to allow substituting the concrete backend imple-
mentation, further modularizing the URL Frontier software
and minimizing dependency on a single technology.

The persistence layer stores the crawl space on long-term
memory and constantly provides the previously persisted
URL items to be fetched next. The database system must ac-
commodate a high number of read operations for populating
first-stage queues and read-insert operations for updating
the crawl space (tens of thousands per second). Any storage
backend must be optimized for two commands: data query-
ing (DQ) and data manipulation (DM), resulting in a tight
data model. This data modeling step is implemented slightly
differently in every database system, but it is key to achieve
low request latency and high crawling throughput. Beyond
data modeling, query routing and data locality significantly
impact performance in a distributed setup. The partition key,
previously mentioned as part of the URL item, has proven
useful for effectively spreading the crawl space over tables
and machines, enabling efficient data querying. However,
these aspects are not discussed in more detail as they are core
concepts of any distributed system and can be successfully
managed by the concrete DBMS.

OWLER IN ACTION
This section shares insights and results obtained with

the current, preliminary crawling system setup. The past
nine months have been a phase of iterative development,
during which OWLer was set up and integrated with the
downstream Open Web Indexing pipeline. During this time,
the deployment was not fully permanent but interrupted
by several breaks used to eliminate deficiencies in polite-
ness, performance, and robustness discovered along the way.
Nevertheless, within these nine months, OWLer discovered
10.2B web links that are persisted on the current OpenSearch-
based storage backend. 1.17B of them have been visited at
least once by one of the StormCrawler-based agents. The
visited URLs are distributed over 37.3M hosts, dispersed
over different topical and geographical domains of the web.
As some web pages have been recrawled, OWLer has pro-
cessed a total of 3.50B URLs, with an 88% successful fetch
rate. This leads to a total of around 3.08B web documents
provided to the indexing pipeline.

In addition to crawling, OWLer has ingested parts of pub-
licly available dumps of Common Crawl to fill our crawl
space with a broad range of seed URLs and provide a contin-
uous output of crawled web documents despite the discontin-
uous deployment of OWLer in the early phases. The result
is approximately 150 TiB of mostly HTML web documents,

6 https://opensearch.org



compressed and archived in WARC file format. All data was
made publicly available as compressed Parquet and CIFF 7

files encoding the Open Web Index as inverted files with
complementary metadata information.

During a four-week period of consistently high perfor-
mance, a setup of six crawlers, two URL Frontier services,
and one OpenSearch node achieved around 36M to 42M
visits per day (equivalent to over 1 TB of WARC files per
day). This means between 6M and 7M visits per crawling
node and around 75 URLs per second per node. Ongoing
experiments indicate the potential for further significant per-
formance increases. Software and infrastructure engineering
efforts in enhancing the processing pipeline, improving the
backend data model, and extending the OpenSearch cluster
suggest an increase in throughput by a factor of two to three
in a similar but more robust setup. More advanced crawling
tools manage up to 1000 URLs per second, and according
to our tests, a URL Frontier instance with one OpenSearch
node can consistently provide enough URLs to supply it.
As a next step in order to meet OWI’s aspiration, the sys-
tem needs to scale horizontally by employing a multi-node
database cluster.

CONCLUSION
This report introduces the Open Web Crawler (OWLer),

a crucial component of the Open Web Index (OWI) devel-
opment project. The OWI aims to promote open access to
web data and encourage innovation in web search technolo-
gies. By providing a publicly funded, legally compliant, and
open-source alternative to web indices of commercial search
engines, the OWI challenges their current dominance and
strengthens the community-driven collection and processing
of web data.

OWLer’s modular and scalable architecture is designed
to handle the diversity and geographic distribution of Eu-
ropean compute resources effectively. This design enables
the system to manage the large-scale, continuous crawling
required to capture a comprehensive snapshot of the web. By
integrating open-source technologies such as StormCrawler,
OpenSearch, and URLFrontier, OWLer demonstrates a com-
mitment to utilizing and contributing to the open-source
community. The tier architecture consisting of crawler, fron-
tier and persistence layer modularizes the software project.
The URL Frontier services take the central position within
this architecture and define interfaces towards crawlers and
the distributed storage system.

Throughout the project, significant technical challenges,
primarily related to achieving efficient distribution and ro-
bustness in data handling, have been addressed. These ef-
forts have already resulted in the collection of billions of
URLs, demonstrating the system’s ability to handle web-
scale data. Future development of OWLer will focus on

7 CIFF denotes the Common Index File Format; for more details, see [7]

improving performance and expanding crawling capabilities.
By continuously refining the system, the project aims to
make even more substantial contributions to the open web
ecosystem, facilitating the creation of innovative applica-
tions and services that leverage the vast amounts of data
processed by OWLer.

ACKNOWLEDGEMENT
This work is part of OpenWebSearch.eu,
funded by the EU under GA 101070014,
and part of CAROLL, funded by the Ger-
man Federal Ministry of Education and
Research (BMBF) under 01|S20049.

REFERENCES
[1] P. Boldi, A. Marino, M. Santini, S. Vigna, BUbiNG: Massive

Crawling for the Masses, ACM Trans. Web 12 (2), May 2018.

[2] S. Chakrabarti, M. van den Berg, B. Dom, Focused crawl-
ing: a new approach to topic-specific Web resource discov-
ery, Computer Networks, Volume 31, Issues 11–16, 1999, pp.
1389–1640.

[3] M. Charikar, Similarity Estimation Techniques from Rounding
Algorithms, Proc. of the 34th Annual ACM Symposium on
Theory of Computing, 2002, pp. 380–388.

[4] M. Dinzinger et al, OWLer: Preliminary results for building a
Collaborative Open Web Crawler, Proc. of the 5th International
Open Search Symposium (OSSYM), Oct. 2023.

[5] M. Granitzer et al, Impact and development of an Open Web
Index for open web search, Journal of the Association for
Information Science and Technology, Aug. 2023.

[6] G. Hendriksen et al, The Open Web Index: Crawling and
Indexing the Web for Public Use, Advances in Information
Retrieval (ECIR 2024), Mar. 2024.

[7] D. Hiemstra et al, Challenges of Index Exchange for Search
Engine Interoperability, Proc. of the 5th International Open
Search Symposium (OSSYM), Oct. 2023.

[8] R. Khare, D. Cutting, K. Sitaker, A. Rifkin, Nutch: A Flexible
and Scalable Open-Source Web Search Engine, 2005.

[9] H. Lee, D. Leonard, X. Wang, D. Loguinov, IRLbot: Scaling
to 6 Billion Pages and Beyond, Proc. of the 17th International
Conference on World Wide Web, 2008, pp. 427–436.

[10] G. S. Manku, A. Jain, A. Das Sarma, Detecting Near-
Duplicates for Web Crawling, Proc. of the 16th International
Conference on World Wide Web, 2007, pp. 141–150.

[11] C. Manning, P. Raghavan, H. Schütze, Web crawling and
indexes (Chapter 20), In: Introduction to Information Retrieval,
Cambridge University Press, 2008.

[12] G. Mohr, M. Kimpton, M. Stack, I. Ranitovic, Introduction
to Heritrix, an archival quality web crawler, Proc. of the 4th
International Web Archiving Workshop (IWAW’04), Jul. 2004.

[13] M. Najork, A. Heydon, High-Performance Web Crawling,
Handbook of Massive Data Sets. Massive Computing (4),
Springer, 2002.


