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Abstract
Knowledge distillation is known as an effective
technique for compressing over-parameterized
language models. In this work, we propose to
break down the global feature distillation task
into N local sub-tasks. In this new framework,
we consider each neuron in the last hidden layer
of the teacher network as a specialized sub-
teacher. We also consider each neuron in the
last hidden layer of the student network as a
focused sub-student. We make each focused
sub-student learn from one corresponding spe-
cialized sub-teacher and ignore the others. This
will facilitate the task for the sub-student and
keep it focused. Our proposed method is novel
and can be combined with other distillation
techniques. Empirical results show that our pro-
posed approach outperforms the state-of-the-art
methods by maintaining higher performance
on most benchmark datasets. Furthermore, we
propose a randomized variant of our approach,
called Masked One-to-One Mapping. Rather
than learning all the N sub-tasks simultane-
ously, we focus on learning a subset of these
sub-tasks at each optimization step. This vari-
ant enables the student to digest the received
flow of knowledge more effectively and yields
superior results.

1 Introduction

Large language models, also known as general
purpose language models, have revolutionized the
NLP domain (Devlin et al., 2019; Brown et al.,
2020; Radford et al., 2019; Clark et al., 2020).
They are large architectures composed of several
transformer blocks (Vaswani et al., 2017), typi-
cally trained on large unlabeled corpora in a self-
supervised way (Devlin et al., 2019; Brown et al.,
2020). They achieved state-of-the-art (SOTA)
performance on downstream tasks through fine-
tuning when the data is scarce (Devlin et al., 2019;
Brown et al., 2020). However, since these models
are typically large and computationally expensive,
such as BERT with millions of parameters (Devlin

et al., 2019) and GPT-3 with billions of parameters
(Brown et al., 2020), they are not highly adapted
to real-world applications like mobile computing.
Model compression is an active field of research
that focuses on effectively reducing the model size
without significant performance degradation (Xu
and McAuley, 2022; Frankle and Carbin, 2018;
Jiao et al., 2020).

Knowledge Distillation (KD) by (Hinton et al.,
2015) is one of the effective compression tech-
niques in NLP where the knowledge of a highly
capable large model, i.e., teacher, is transferred to
a smaller efficient model, i.e., student. KD essen-
tially requires designing a loss function to mini-
mize the distance of the output or the intermediate
representations between the student and the teacher
(Sanh et al., 2019; Jiao et al., 2020; Hinton et al.,
2015). To distill the intermediate representations,
previous research relied on the mean square error
(MSE) as an objective function between the stu-
dent and the teacher global representations (Sun
et al., 2019; Jiao et al., 2020). However, this met-
ric is sensitive to scale (Saadi and Taimoor Khan,
2022) and it is not accurate in high dimensional
space (Aggarwal et al., 2001; Houle et al., 2010).
Other works used the cosine distance as an alterna-
tive, but, it also has several limitations (Zhou et al.,
2022; Schütze et al., 2008) such as not performing
well with sparse data.

In this work, we focus on distilling the teacher’s
last hidden layer representation into the student’s
last hidden layer representation. To achieve that,
we propose a novel KD approach where we refor-
mulate this feature distillation task from a global
problem to N local sub-problems. Here, the term
"local" refers to the consideration of each dimen-
sion or neuron individually. In this work, our main
assumption is that the student last hidden layer has
the same dimension as the teacher last hidden layer.
We note that this is a common assumption in fea-
ture distillation (Sanh et al., 2019).



In our proposed framework, we consider each
neuron in the teacher’s last hidden layer as a spe-
cialized sub-teacher and each neuron in the stu-
dent’s last hidden layer as a focused sub-student.
Each specialized sub-teacher is in charge of dis-
tilling its knowledge to the corresponding focused
sub-student. We call this a one-to-one matching
between the teacher and the student last hidden
layers units. To accomplish this one-to-one distilla-
tion, we propose a novel objective function where
we maximize the per-batch correlation between the
outputs of each specialized sub-teacher and its cor-
responding focused sub-student. Empirical results
show that studying the global feature distillation
task from a local viewpoint helped the student to
meet the global teacher’s features representation.
In addition, we propose an augmented variant of
our approach where the model learns a subset of
sub-tasks at a time. To sum up, our contributions
are the following:

• We reformulate the global feature distillation
task into N local sub-tasks where we do a one-
to-one mapping between the last hidden layers
units of the teacher and the student models.

• We propose a local correlation-based objective
function to achieve the One-to-One Mapping
distillation.

• We conduct extensive experiments: 1. Stand-
alone experiments on the SQUAD V1 and the
IMDB dataset. 2. Comparison with the com-
peting methods on 8 GLUE datasets (Wang
et al., 2018). Our approach performs the best
in most cases.

• We present an augmented variant of our pro-
posed approach called: Masked One-to-One
Mapping. Empirical results show the effec-
tiveness of this new variant.

2 Related Work

Model compression techniques are employed to
effectively reduce the size of a neural network
while maintaining good performance. Various
approaches have been proposed such as pruning
(Frankle and Carbin, 2018). It aims to remove
unimportant structures, e.g., weights, neurons, and
even entire layers from the model (Lagunas et al.,
2021; Prasanna et al., 2020). Another technique
is weight sharing (Long et al., 2017), where differ-
ent parts of the model use the same set of weights

to perform computations (Lan et al., 2019; Reid
et al., 2021). Quantization (Zhou et al., 2017) is
yet another strategy used in model compression,
where the weights and activations in the network
are represented using lower bit integers instead of
higher precision floating-point numbers (Kim et al.,
2021; Prato et al., 2020).

Knowledge distillation (Hinton et al., 2015;
Zhang et al., 2020; Sanh et al., 2019), which is
the focus of this paper, is also a successful com-
pression technique. It involves training a smaller,
more efficient student model to mimic the behavior
of a larger, knowledgeable teacher model. By lever-
aging the knowledge of the teacher model to the
student model, the student can achieve compara-
ble performance to the teacher while maintaining a
lower size. Knowledge distillation has been proven
to be an effective technique for large language
model compression (Sun et al., 2019; Sanh et al.,
2019). It can be applied during the pre-training
stage to generate general-purpose distilled models
(Jiao et al., 2020; Sanh et al., 2019) and during the
fine-tuning stage to generate task-specific distilled
models (Zhou et al., 2021; Liang et al., 2020; Sun
et al., 2019).

In (Kovaleva et al., 2019), the authors show
that large language models, e.g., BERT, suffer
from over-parametrization in domain-specific tasks.
Thus, previous work has been improving the task-
specific distillation. Several methods focused on
enhancing the objectives of the distillation process.
These improvements mainly focused on which part
of the teacher architecture can be distilled into the
student architecture such as the attention matrices
(Jiao et al., 2020), the different hidden states (Sun
et al., 2019), and the prediction layer (Hinton et al.,
2015).

Coming up with effective objective functions to
distill the knowledge from any part of the teacher
into the student is critical. For the logit-based KD,
the KL divergence or the MSE are used as objective
functions to minimize the distance between the
logits of the student and the logits of the teacher
(Hinton et al., 2015; Zhou et al., 2021). Following
that, in (Zhao et al., 2022), the authors provided
a novel viewpoint to study the logit distillation
by reformulating the classical KL divergence loss
into two parts, which showed a good improvement.
In the feature-based KD, the MSE and the cosine
distance are mainly used as objective functions to
align the intermediate layers representations of the



teacher and the student (Sun et al., 2019; Jiao et al.,
2020; Sanh et al., 2019).

In this work, we argue that relying on the MSE
and the cosine distance as loss functions to align the
intermediate representations between the student
and the teacher is not an optimal choice. MSE is
sensitive to scale and does not perform well in high-
dimensional space. In a high dimensional space,
which is the case in a neural network, the data tend
to be sparse and all the data points become uni-
formly distant from each other (Aggarwal et al.,
2001; Houle et al., 2010). In fact, the embeddings
(features representation) provided by BERT-like
models are high-dimensional and sparse tensors
in nature (Li et al., 2022). Thus, using MSE or
cosine distance to measure the distance between
these sparse representations is not optimal as ex-
plained and advocated in (Aggarwal et al., 2001).
So, splitting the task into sub-tasks and using one-
to-one metric alleviates this problem and breaks
the curse of dimensionality. In (Zhou et al., 2022),
it is also shown that the cosine distance is not an
accurate measurement of similarity between BERT
embeddings. Moreover, the cosine distance mea-
sure can be also affected by sparsity. In fact, in
high-dimensional space, it can output large angles
between two sparse vectors although they are sim-
ilar in the non-zero components (Schütze et al.,
2008). Another important limitation of the cosine
distance is that it is a global metric and sensitive
to unit permutation. For example, let W1 be the
output tensor of a given layer in the teacher and
W2 be the output of the corresponding layer in the
student. In the following example, we compute the
cosine distance (CosD) from W1 and W2:

W1 = [1, 5]

W2 = [5, 1]

CosD(W1,W2) = 1− W1 ·W2

∥W1∥2 ∥W2∥2
= 0.6154

It is a high value but the layers actually learned the
same representation.

In our work, instead of treating feature distilla-
tion as a global task (Sanh et al., 2019; Sun et al.,
2019) between teacher-student layers, we reformu-
late it as multiple local sub-tasks. Furthermore,
for each per-dimension KD sub-task, instead of
using MSE or cosine distance (Sanh et al., 2019;
Jiao et al., 2020; Sun et al., 2019), we propose a
noval loss function that utilizes a per-batch correla-
tion function. This improves the student’s ability

to meet the global representation provided by the
teacher. We note that the initial results of our work
on the one-on-one mapping approach are presented
in (Saadi et al., 2023).

3 Our Approach: One-to-One Mapping

In this work, we provide a new viewpoint on how to
study the feature distillation task. We break down
the global KD task into multiple local KD sub-tasks.
Specifically, in the last hidden layer of the teacher,
we consider each unit as a specialized sub-teacher.
In the last hidden layer of the student, we also
treat each unit as a focused sub-student. Each sub-
student should concentrate and learn only from the
corresponding specialized sub-teacher. We refer
to this as One-to-One Mapping, which is reformu-
lated as the cross-correlation between the outputs
of each specialized sub-teacher and its correspond-
ing focused sub-student. The mapping between
each sub-student and each sub-teacher is fixed, i.e.
based on an index, and thus remains consistent over
batches and epochs. Although our approach can
be applied to different student-teacher hidden lay-
ers, as in (Sun et al., 2019), this work specifically
focuses on the last hidden layer.

Typically, in a KD framework, as illustrated in
Figure 1, we have the teacher network modeled by
fθ, which is an over-parameterized knowledgeable
model. The student network is modeled by f

′

θ′

which is an efficient model that has a lower number
of parameters compared to the teacher. The input
batch X is fed to fθ and f

′

θ′
simultaneously to

produce the batches of features representation Yt

and Ys, respectively.
We assume that Yt and Ys are the features rep-

resentation of the last hidden layer of the teacher
hLastt and the last hidden layer of the student hLasts ,
respectively. Ys and Yt are assumed to be mean-
centered over the batch dimension. We assume that
hLastt and hLasts have N hidden units. The uniti
in hLastt represents the specialized sub-teacheri
and the uniti in hLasts represents the focused sub-
studenti. The sub-taski is distilling the Knowledge
from the specialized sub-teacheri to the focused
sub-studenti by reducing the distance between the
features learned by each of them.

To simplify the task for the sub-studenti and to
keep it focused, we force it to learn only from the
sub-teacheri and ignore the other sub-teachers. We
reformulate the objective function in this one-to-
one mapping as maximizing the cross-correlation



Figure 1: One-to-One Mapping: X is the input batch. n is the batch size. T is a given sample. C is the cross
correlation function. The Student and the Teacher are modeled by f

′

θ′ and fθ, respectively. Ys and Yt are the
features representation of the last hidden layer of the student and the teacher, respectively.

between the two variables yti and ysi . yti and ysi are
the output values of the sub-teacheri and the sub-
studenti, respectively. The variables yti and ysi have
n samples coming from the different examples in
the input batch. Maximizing the correlation across
batches between the two aforementioned variables,
i.e., minimizing the following loss function:

li = (1− Cii)
2 (1)

where Cii is the cross-correlation value between
the variables yti and ysi :

Cii =

∑n
b=1 y

t
b,iy

s
b,i√∑n

b=1 (y
t
b,i)

2
√∑n

b=1 (y
s
b,i)

2
(2)

b is the index of a given sample in the input batch X .
n is the number of examples in the input batch X .
i, j index the output dimension of the last hidden
layer in both the teacher and the student. In fact, i
is the index of the ith element in the output and it
is also the index of the ith neuron in the last hidden
layer, i.e., sub-teacheri or sub-studenti.

As we want to make the task easier for the sub-
studenti, so it can effectively digest the received
information, we force it to mimic only the teacheri
and repel all knowledge coming from the other
teachers. This results in minimizing the following
term:

Ri =

N∑
j ̸=i

C2
ij (3)

Thus, our final per-dimension KD loss function, as
shown in Figure 1, is:

Li = li +Ri = (1− Cii)
2 +

N∑
j ̸=i

C2
ij (4)

In Li, the first term is for maximizing the cross-
correlation over batches between the output of the

sub-studenti and the output of the sub-teacheri. The
second term is for minimizing the cross-correlation
between the sub-studenti and each sub-teacherj
given j ̸= i and j ∈ {1, 2, ..., N}. Our end distilla-
tion loss is the sum of the N local KD losses.

LKD =
N∑
i

Li =
N∑
i

(1− Cii)
2 +

N∑
i

N∑
j ̸=i

C2
ij

(5)
Additionally, we introduce λ1 and λ2 as the

weights to control the contribution of the first term
and the second term of the loss function, respec-
tively:

LKD = λ1

N∑
i

(1− Cii)
2 + λ2

N∑
i

N∑
j ̸=i

C2
ij (6)

The final training loss of the original student is:

L = αLCE + βLKD (7)

Where LCE is the classical cross entropy loss be-
tween the student predictions and the ground truth
labels:

LCE = − 1

n

n∑
i

yi × log f
′

θ′
(xi) (8)

Where xi is an input sample and yi is its ground
truth label. n is the number of samples per batch.

Empirical results will show that our One-to-One
Mapping approach effectively facilitates the align-
ment of the student features representation with
the global teacher feature representation. Our ap-
proach can be implemented at a low computational
cost and can be combined with other knowledge
distillation methods.



4 Experimental Results

In our experiments, the teacher is the BERT-base
model, with 110 million parameters, after being
fine-tuned on each of the datasets for 3 epochs.
The student is the DistilBERT-base with 66 million
parameters. N , which is the number of neurons, in
the last hidden layer of the teacher and the student,
is equal to 768. All experiments are repeated for 5
random seeds, the learning-rate is set to 5e-5, the
maximum sequence length is set to 128, and the
batch size is set to 16.

4.1 Stand-Alone Experiments

4.1.1 Stand-Alone Results
In this stand-alone performance evaluation, we ex-
periment with the Stanford Question Answering
Dataset (SQuAD-V1) (Rajpurkar et al., 2016) and
the Internet Movie Database dataset (IMDB) (Maas
et al., 2011). The SQUAD-V1 is a reading com-
prehension dataset, consisting of questions posed
by crowd workers on a set of Wikipedia articles,
where the answer to every question is a segment
of text, or span, from the corresponding reading
passage. The reported metrics for SQUAD are the
Exact Match (EM) (Rajpurkar et al., 2016), which
measures the percentage of predictions that match
any one of the ground truth answers exactly, and
the F1-score (Rajpurkar et al., 2016), which mea-
sures the average overlap between the prediction
and ground truth answer. The IMDB dataset is
a sentiment analysis dataset consisting of 50,000
movie reviews labeled as positive or negative.

We distill the last hidden layer representation of
the teacher into the last hidden layer of the student.
We add our designed KD loss, the MSE as in (Sun
et al., 2019), and the cosine distance as in (Sanh
et al., 2019), as stand-alone regularizers to the hard
loss between the student predictions and the ground
truth labels. This will show the effectiveness of our
proposed objective function for the feature distil-
lation task. We experiment with 3 and 10 epochs.
The weight of each KD stand-alone loss and the
weight of the hard loss are fixed to 0.5 (Sanh et al.,
2019; Jiao et al., 2020).

In Table 1, BERT12 and Distilbert6 refer to the
BERT-base pre-trained language model with 12
transformer blocks and to the DistilBERT-base
model with 6 transformer blocks, respectively.
Distilbert6-FT stands for fine-tuning the student
without any distillation. Distilbert6-cosD stands
for feature distillation with cosine distance objec-

tive function. Distilbert6-MSE stands for feature
distillation with MSE loss.

As shown in Table 1, our proposed method
achieves the best results on the feature distillation
task. It could outperform MSE and cosine distance
on the squad and the imdb datasets. The results
show that our approach performs the best when
the distillation task is run for 3 epochs. It achieves
an Exact Match (EM) score of 78.79% and an F1
score of 86.95% on the squad dataset. It also gives
an accuracy of 93.87% on the imdb dataset. In
Table 2, For 10 epochs, while the performance of
the other approaches decreased, ours effectively in-
creased. It achieves 79.46% and 87.48% as EM and
F1, respectively, on the squad dataset and 93.96%
as accuracy on the imdb dataset. This proves that
our approach yields better representation of the stu-
dent features. Another noteworthy aspect is that the
standard deviation of the results of our approach
is low compared to the others. This indicates the
stability and consistency of our proposed method.

4.1.2 Sensitivity Analysis

In this subsection, we investigate the impact of the
weight value assigned to each stand-alone loss on
the performance of the student model. As a re-
minder, in this stand-alone evaluation, the overall
loss function for the student model is computed
as the weighted sum of the hard loss and each
stand-alone KD loss. The KD stand-alone loss
is computed between the last hidden layer of the
student and the last hidden layer of the teacher. As
KD stand-alone regularizers, we will compare the
MSE, the cosine distance, and our newly formu-
lated loss function. We maintain a fixed weight for
the hard loss, i.e., 0.5, while varying the weight
assigned to each stand-alone loss term. Here, the
number of epochs is set to 3.

As illustrated in Figure 2, on the IMDB dataset,
the accuracy of the student model utilizing our
stand-alone loss consistently surpasses those em-
ploying MSE and cosine distance for all weight
values. Additionally, as shown in Figure 3, on the
squad dataset, utilizing our novel loss consistently
yields the highest performance in terms of both
the Exact Match (EM) and F1 metrics, across all
hyper-parameter values, when compared to MSE
and cosine distance. This highlights the robustness
and effectiveness of our novel approach.



Approach SQUAD-V1 (%) IMDB (%)
BERT12 (teacher) 80.36/88.13 94.06
Distilbert6-FT 77.43±0.22/85.67±0.10 93.19±0.09
Distilbert6-cosD 77.82±0.29/85.92±0.23 93.66±0.08
Distilbert6-MSE 77.72±0.21/85.86±0.12 93.49±0.08
Distilbert6-ours 78.79±0.12/86.95±0.06 93.87±0.01

Table 1: Stand-Alone regularizers. SQUAD-V1: The evaluation is reported as Exact Match (EM) and F1 on the dev
set. IMDB: The evaluation is reported as accuracy on the test set. Results are the average and the standard deviation
of 5 random seeds. Training for 3 epochs.

Approach SQUAD-V1 (%) IMDB (%)
BERT12 (teacher) 80.36/88.13 94.06
Distilbert6-FT 74.32±0.37/83.69±0.31 92.71±0.08
Distilbert6-cosD 75.78±0.27/84.57±0.11 93.90±0.08
Distilbert6-MSE 75.17±0.18/84.25±0.15 93.82±0.07
Distilbert6-ours 79.46±0.08/87.48±0.05 93.96±0.01

Table 2: Stand-Alone regularizers. SQUAD-V1: The evaluation reported as EM and F1 on the dev set. IMDB: The
evaluation reported as accuracy on the test set. Results are the average and the standard deviation of 5 random seeds.
Training for 10 epochs.

Figure 2: Variation of the model performance on the
IMDB dataset in function of the weight of each stand-
alone loss in the final loss. For each weight value, the
experiments are repeated for 5 seeds and the average is
reported.

4.2 Comparison With Competing Methods

In this evaluation part, we compare the perfor-
mance of our proposed approach with the compet-
ing methods on the commonly used GLUE bench-
mark dataset (Wang et al., 2018) for knowledge
distillation in NLP. For comparison, we fine-tune
the student on the tasks without distillation. We
report the stand-alone results for MSE and cosine
distance. We also generate the results of vanilla KD
(Hinton et al., 2015) and PKD (Sun et al., 2019).
For the PKD approach, we use a similar setting to
(Sun et al., 2019), where the number of epochs is
set to 4, the distillation loss ratio is set to 100, the
hard loss ratio is set to 0.5, and the temperature

Figure 3: Variation of the model performance on the
SQUAD-V1 dataset in function of the weight of each
stand-alone loss in the final loss. For each weight value,
the experiments are repeated for 5 seeds and the average
is reported.

is set to 5. For the rest of the baselines, similar to
(Sanh et al., 2019; Zhou et al., 2021), the number of
epochs is set to 3. For the vanilla-KD, the tempera-
ture is set to 2 (Hinton et al., 2015). All weights in
loss functions are fixed to 1 except for the vanilla-
KD loss weight is chosen from {0.4, 0.5, 0.6} (Sun
et al., 2019) and 0.4 is the best match. In our ap-
proach, λ1, λ2, α, and β are set to 1, 5.10−3, 0.5,
and 5.10−3, respectively. After performing a man-
ual tuning, we found out that the aforementioned
hyper-parameter settings led to stable results. The
number of epochs is set to 3.

The GLUE benchmark dataset is composed
of several sub-datasets for different tasks. QQP,



Approach MRPC RTE CoLA SST-2 STS-B MNLI-m QNLI QQP AVG
BERT12(teacher) 87.86 66.79 54.84 90.02 89.30 82.85 90.70 88.04 81.30
Distilbert6-FT 84.48 56.17 44.28 89.54 85.40 80.41 86.71 87.79 76.85
Distilbert6-CosD 85.38 63.75 46.82 89.79 85.59 80.51 88.62 87.78 78.53
Distilbert6-MSE 86.04 62.38 47.35 89.79 85.42 80.12 88.13 87.90 78.39
Distilbert6-PKD 86.06 62.24 47.28 90.05 85.77 81.62 87.16 88.33 78.56
Distilbert6-KD 84.56 56.53 45.86 89.63 85.50 80.51 87.71 87.60 77.23
Distilbert6-ours 86.57 63.83 50.73 90.44 85.66 82.76 89.54 88.04 79.70

Table 3: Results on the GLUE dataset: Evaluation reported on the dev set as the average of 5 random seeds. Training
for 3 epochs. AVG is the average performance across the 8 GLUE datasets. All values are in (%).

Approach MRPC RTE CoLA SST-2 STS-B MNLI-m QNLI QQP AVG
BERT12(teacher) 87.86 66.79 54.84 90.02 89.30 82.85 90.70 88.04 81.30
Ours 86.03 64.19 53.21 89.91 85.88 82.29 89.09 88.28 79.84
Ours-Masked(80%) 85.79 64.55 53.16 90.18 85.94 82.41 89.44 88.32 79.97
Ours-Masked(70%) 86.18 64.84 52.71 89.63 85.97 82.28 89.37 88.32 79.91
Ours-Masked(Best) 86.45 65.05 53.16 90.18 85.97 82.42 89.44 88.37 80.13

Table 4: Results on the GLUE dataset: Comparison between Ours and ours-Masked. Evaluation reported on the dev
set as the average of 5 random seeds. AVG is the average performance across the 8 GLUE datasets. All values are in
(%). Between parenthesises is the percentage (%) of the learned sub-tasks in each iteration. Training for 5 epochs.

MRPC, and STS-B are for the paraphrase simi-
larity matching task. SST-2 is for the sentiment
classification task. MNLI-m (matched version of
MNLI), QNLI, and RTE are for the natural lan-
guage inference task. CoLA is for the linguistics
acceptability task. For MRPC and QQP we report
the combined score from F1 and accuracy. For
STS-B we report the combined score from Pearson
correlation and Spearman correlation. For CoLA
we report the Matthew’s correlation. For the rest of
the tasks, accuracy is the metric.

As shown in Table 3, our approach outperforms
KD, which stands for vanilla-KD (Hinton et al.,
2015), and the PKD (Sun et al., 2019) baselines on
most of the GLUE tasks. It is worth mentioning
that for the SST-2 and QQP datasets, the resulting
student model using our approach and the one using
the PKD approach could exceed the performance of
the teacher. This is commonly observed in (Stanton
et al., 2021; Furlanello et al., 2018). Furthermore,
it consistently outperforms the MSE and the co-
sine distance distillation objective functions, which
are applied between the last hidden layer of the
teacher and the last hidden layer of the student, on
all the GLUE tasks. As shown in the last column
of Table 3, on all the GLUE tasks, our One-to-One
Mapping approach achieves the highest average
performance, i.e., 79.70%, with up to 1.14% com-
pared to the results of the other approaches. Our
proposed approach helped to effectively reduce the

gap between the teacher average performance, i.e.,
81.30% and the student average performance, i.e.,
79.70% on all the GLUE tasks.

5 Ablation Study

See results in Table 5 and as shown in the table
both terms of the loss are important and their com-
bination achieves the best results across most of
the datasets. Thus, the two components of the loss
have a compound effect. LCE is the hard loss. l
is the first term in the LKD loss. R is the second
term in the LKD loss (the repel term).

6 Analayis

6.1 Layer Distillation: Our loss as an
alternative for MSE and CosD

Rather than looking at our approach as a competing
method to the KD state-of-the-art approaches,
it is proposed to replace any MSE or cosine
distance-based feature distillation methods
between two hidden layers included in any
knowledge distillation approach. To show that
our approach can outperform MSE and cosine
distance, applied globally, in the existing pipelines,
we experiment with SRRL (Yang et al., 2020),
one of the latest KD approaches. SRRL KD loss
has two components: the feature loss, which is
an MSE between the last layer’s features of the
teacher and the last layer’s features of the student,



Table 5: Ablation Study (Ours). All values in (%). All the results are the average over 5 trials
approach MRPC RTE CoLA SST-2 STS-B QNLI MNLI-m QQP AVG
LCE + l 86.85 63.61 48.24 90.87 85.47 89.63 81.85 87.60 79.26
LCE +R 75.85 53.79 34.71 85.25 85.25 85.66 74.43 87.69 68.49
LCE +R+ l 86.57 63.83 50.73 90.44 85.66 89.54 82.76 88.04 79.70

and the logit loss. In this experiment, we replace
the feature KD loss in SRRL with our newly
introduced correlation loss function. As shown
in the Table 6, our feature distillation approach
replacing MSE loss yields superior performance
for SRRL on the two GLUE datasets.

Table 6: SRRL vs SRRL-Ours
approach QNLI(%) RTE(%)
SRRL 88.04 63.68
SRRL-Ours 88.68 64.10

6.2 Model Efficiency
Although our distillation objective is applied as a
stand-alone between the last hidden layer of the
student and the last hidden layer of the teacher, it
could outperform PKD. Note that PKD (Sun et al.,
2019) distills different hidden-state features plus
the logits. However, our approach distills only the
last hidden feature of the teacher to the student.
Our approach has a lower computational, as shown
in Table 7, our approach is trained in less time. In
this experiment, we report the training time of PKD
and Ours on 3 different datasets. Training was done
on a single A100 GPU with a fixed batch-size of
16.

6.3 Sensitivity to the Batch Size
Our proposed loss function depends on the batch-
size. As shown in Table 8, in all the datasets, the
performance of our approach is consistent and sta-
ble across all the batch-size values. This illustrates
the robustness of our proposed method and shows
that it can work well even with small batch-size
values. However, it is clear when the batch-size
increases, the results marginally increase on most
of the datasets. This is logical because by increas-
ing the number of samples, the correlation value
become more accurate.

7 Masked One-to-One Mapping

In our One-to-One Mapping feature distillation ap-
proach, the goal for the student is to mimic the
last hidden layer representation of the teacher. To
achieve this, we break down the global feature dis-
tillation task into N local sub-tasks. To further

enhance the student performance, we propose an
augmented variant of our approach called Masked
One-to-One Mapping. Instead of learning all N
sub-tasks simultaneously, it is more effective for
the student to focus on a subset of the total sub-
tasks at a time. This approach enables the student
to effectively absorb and manage the incoming flow
of knowledge from the teacher.

As shown in Figure 4, during each iteration (op-
timization step), we randomly mask a subset of
units in the last hidden layer of the teacher and in
the last hidden layer of the student. Afterwards,
we will have m (where m < N ) neurons, i.e., m
feature distillation sub-tasks left for the student
to learn. We accomplish this by applying a same
binary mask M to the last hidden layer features
representation of both the student and the teacher
simultaneously.

Formally, given Ys ∈ RN×n and Yt ∈ RN×n,
the features representation of the student and the
teacher, respectively. N is the number of neurons
in the last hidden layers of the teacher and the
student. n is the batch size. To generate a ran-
dom binary mask M , we create a vector of size
N containing independent Binomial random vari-
ables. Each variable in this vector takes the value 1
with a probability p and 0 otherwise. We multiply
element-wise this binary mask M by each column
of Yt and Ys to generate the masked features rep-
resentation Y

′
t of the teacher and Y

′
s of the student,

respectively:

M ∼ Bernoulli(p)

Y
′
t = [Y 1

t ⊙M,Y 2
t ⊙M,Y 3

t ⊙M, ..., Y n
t ⊙M ]

Y
′
s = [Y 1

s ⊙M,Y 2
s ⊙M,Y 3

s ⊙M, ..., Y n
s ⊙M ]

Where Y 1
t represents the first column (the fea-

ture representation of the first sample in the input
batch X) of the features representation Yt of the
teacher. ⊙ denotes the element wise multiplication.
After removing the masked rows, i.e., rows with all
elements zeros, from Y

′
t and Y

′
s , we obtain the new

features representation of the teacher Y
′
t ∈ Rm×n

and the student Y
′
s ∈ Rm×n, where m < N .

In the next steps, we apply the same One-to-One
Mapping approach described in section 3. How-



Table 7: Training time of PKD and Ours. The results are in hours (H)
approach MNLI-m (H) QNLI(H) SST-2(H)
PKD 3.00 0.73 0.53
Ours 2.13 0.63 0.47

Table 8: The performance of our approach (Ours) across different batch-size values. Average over 5 trials.
Batch-size MNLI-m (%) QNLI (%) SST-2 (%) RTE (%)
4 82.41 89.43 90.18 63.24
8 82.54 89.53 90.44 65.85
16 82.76 89.54 90.44 63.83

ever, instead of having N specialized sub-teachers
and N focused sub-students, in our Masked One-to-
One Mapping, we have m specialized sub-teachers
and m focused sub-students. Furthermore, we have
m sub-tasks where each focused sub-student at-
tempts to mimic the feature representation of the
corresponding specialized sub-teacher while disre-
garding the others. To achieve this, we utilize the
modified training objective function 6.

L
′
KD = λ1

m∑
i

(1− Cii)
2 + λ2

m∑
i

m∑
j ̸=i

C2
ij (9)

We conduct experiments on 8 GLUE datasets us-
ing the same setup as described in subsection 4.2.
However, in these new experiments, we extend
the training time to 5 epochs because as shown in
Tables 3 and 4, the average performance on the
GLUE tasks of our student model is higher when
trained for 5 epochs compared to when trained for
3 epochs. We introduce p as the percentage (%)
of sub-tasks to be learned at a given optimization
step. We conduct experiments for all values of p
∈ {10, 20, 30, 40, 50, 70, 90}. However, we report
the results of the two best setups, in function of p,
in terms of the average performance across all 8
GLUE datasets. Additionally, we provide the best
performance achieved for each individual dataset.
For each dataset, the experiment is repeated for 5
seeds and the average is reported.

As illustrated in Table 4, the average perfor-
mance on the GLUE datasets for the Masked One-
to-One Mapping approach, referred to as Ours-
Masked, is higher than the value obtained by the
One-to-One Mapping, referred to as Ours, for the
two p values 80% and 70%. When considering
the best performance across all p values for each
individual dataset, denoted as Ours-Masked(Best),
the gap between the teacher performance (81.30%)
and the student performance (80.13%) is effectively
reduced.

Figure 4: Masked One-to-One Mapping: In each opti-
mization step, the neurons that are marked by the red
color will be masked.

8 Conclusion and Future Work

In this paper, we reformulated the global feature
distillation problem into N local sub-problems. We
proposed a one-to-one mapping between each neu-
ron in the last hidden layer of the teacher, i.e.,
specialized sub-teacher, and each neuron in the
last hidden layer of the student. i.e., focused sub-
student. To achieve this goal, we proposed a local
correlation-based loss across batches between each
specialized sub-teacher output and its correspond-
ing focused sub-student output. Our approach only
requires the teacher and the student to have the
same last hidden layer size. Several experiments
proved the effectiveness and consistency of our
method. Our approach can be added to any KD
method in NLP or vision. Moreover, we proposed
an augmented variant of our One-to-One Mapping
approach called Masked One-to-One Mapping. In-
stead of learning all the sub-tasks simultaneously,
we make the student learn a subset of the tasks at
a time. Future work includes exploring the same
distillation process with several intermediate layers
and experimenting with our approach beyond the
NLP tasks.



Limitations

In this work, the proposed approach requires the
student and the teacher to have the same last hid-
den layer size, which might be a limitation. One
possible solution could be to investigate the impact
of adding a projector after the last hidden layer of
the teacher to make it match the last hidden layer
size of the student.
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