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Abstract

Rhetorical figures are an essential but well concealed part of our language. They subtly

influence our perception and comprehension of speech, often working together to create

appealing rhetorical effects. Due to their nature, they are difficult to detect for a human

being and even more so for a computer. This work focuses on the automatic detection

of two related figures: chiasmi and antimetabole. They are both defined by a inverse

repetition, like in the famous phrase “All for one, one for all”, which makes them schemes

(figures that rely on the structure of a text). The major hurdles for detecting salient

chiasmi are its rarity in the English language, the abundance of uninteresting inverse

repetitions, and the lack of research coupled with the lack of annotated data for it. The

contributions of this thesis are threefold: (1) a novel and complete pipeline to extract

chiasmi candidates from raw text based on the inverse repetitions of lemmas and of word

embeddings, up to their annotation; (2) a manually retrieved and annotated dataset

more than ten times the size of currently available ones, leaving us with 585 annotated

antimetabole and almost one hundred remaining (which could not be extracted by our

pipeline); (3) eventually, a comprehensive study of various Machine Learning models

for detecting salient antimetabole, built upon baselines from the state-of-the-art and

augmented with novel features, which manage to outperform the state-of-the-art.
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1 Introduction

1.1 Context

This project’s subject was first introduced in October, 2021, as part of the PhDTrack

program between the French engineering school INSA Lyon (Computer Science Depart-

ment) and the German University of Passau (Faculty of Computer Science and Math-

ematics). This program allows its participants to study in both institutions, to have

supervision from both sides and, eventually, to obtain a double master’s degree. Several

special courses and projects in Lyon completed with the courses in Passau, along with

this research project as a master thesis, aim at supplementing the students’ engineering

toolkit with research-oriented skills and giving them another precious point of view for

their career prospects.

A substantial share of this project in particular was carried out as a two-man team.

Thus, I will try to focus as much as possible on my own work. When needed, I will also

specify which parts were covered by my partner, Guillaume Berthomet (his complete

work is covered by Berthomet (2023) [Ber23]), or by us both.

1.2 Definition of the Problem

1.2.1 Specifications

The subject for this thesis has evolved quite a lot since its presentation, and has especially

been clarified. However, the original transcribed in the appendix B remains sufficiently

relevant as a base:

1

https://irixys.uni-passau.de/double-master-program/
https://irixys.uni-passau.de/double-master-program/
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1 Introduction

The goal of this thesis is to extend existing datasets by collecting examples

[...] The next step is implementing different rule-based or machine learn-

ing algorithms (e.g., active learning for small datasets) and comparing their

accuracy for the detection of chiasmus and antimetabole.

Therefore, this thesis places itself at the frontier of two complementary fields: linguistics

which is necessary for the comprehension, the definition and the investigation of the

aforementioned rhetorical figures (chiasmus and antimetabole1), and, of course, data

science which is crucial for the gathering, cleaning, and exploitation of the data, then

for designing and building predictive models to allow proper detection of our figures.

However, even if the goal of this thesis is to use linguistics only as a mean to enrich

the data science, which is its central part, doing data science without the appropriate

amount of linguistics merely adds up to playing in a sandbox.2

As stated, the ultimate goal of this project is to be able to automatically detect chiasmi

- or rather, as we will see, antimetabole. In order to get there, many steps are required

beforehand:

• Understanding the linguistic background of the problem (see Section 2.1);

• Exhaustive and thorough reviewing of the state-of-the-art (see Section 2.2.1);

• Analysis of the existing data and eventual new data collection (see Section 3.3);

• Data preprocessing (see Section 3.3.2) which includes two main parts:

– The development of a tool used for preprocessing the data, notably by ex-

tracting chiasmi candidates;

– The cleaning and annotation of the preprocessed data;

• Proposal and implementation of new models of automatic chiasmi detection al-

lowing to distinguish the relevant candidates from the mass based on traditional

Machine Learning models (see Section 3.4.2);

• Evaluation and comparison of the proposed models with the state-of-the-art (see

Section 4) which also includes:

1These two in particular, as well as other rhetorical figures, will be defined precisely later. In the
meantime, a glossary of the rhetorical figures mentioned in this thesis can be found in Appendix A.

2This was indeed an antimetabole. One could not resist the temptation of surreptitiously inserting
antimetabole in a thesis on antimetabole, even if the primary pedagogical purpose is obviously to
get the reader used to the figure.

2



1 Introduction

– Re-implementation and adjustment of the state-of-the-art models to work

with the fresh data;

– Definition of the evaluation protocol.

1.2.2 Research Questions

Be that as it may, perhaps the most vital problem of this project was to define the scope

of the problem itself: chiasmi or antimetabole? But what is, even, a chiasmus?

And an antimetabole? Which forms can they take? What makes them so

particular and valuable? [RQ1] Hopefully, all these questions should find their

answer in the following chapter (Section 2.1).

Once the figures identified, the second question that arises3 concerns itself with where

to find them: as we will see in the next chapter (Section 2.2), chiasmi are painfully rare

figures along with having been very little researched, so that almost no data is available

to this day. Put plainly: how and where to find interesting chiasmi? [RQ2]

Following ideas from the state-of-the-art, we tried to answer the second question with

yet another one: is it possible to efficiently4 extract chiasmi candidates from

any given text? [RQ3]

Last but not least, once all these issues are tackled, we eventually remember our original

goal and come back to the automatic detection of chiasmi: how can we improve the

currently best performing algorithms for detecting salient chiasmi? [RQ4]

1.3 Contributions Preview

This thesis and the hidden work behind it mainly contributes to this day’s state-of-the-

art on three aspects.

First, we put together a new dataset of proportions that are incomparable with the

existing and available ones (to this day) for chiasmi and antimetabole. By considering

that the only current available state-of-the-art’s dataset (see Section 2.2) is comprised of

3The project’s chronological unfolding is overlooked in order to give what should be a more logical
and easily understandable explanation.

4In this case, efficiency has to be a trade-off between recall - i.e. extracting as many relevant chiasmi
as possible -, and the number of extracted candidates - i.e. extracting as few irrelevant candidates
as possible.

3



1 Introduction

31 antimetabole instances annotated as True, our new dataset thus expands this num-

ber by more than 1000%. As for chiasmi, we provided the first list of various types of

chiasmi.

Concerning the automatic extraction of chiasmi and antimetabole candidates in plain

text, we developed from scratch the first up-to-date full pipeline for preprocess-

ing and extracting said candidates5. It makes their annotation as easy as possible,

by allowing one to rank them with a proper detection model and annotate only the top

hits with a compatible open-source annotation tool. The pipeline also permits the re-

injection of the annotated data within the pipeline’s first output and within the original

text in a readable format.

Lastly, we re-implemented the state-of-the-art and several models of our own

for detecting salient antimetabole among uninteresting candidates6. By doing so, we

manage to outperform the state-of-the-art by improving their features as well as intro-

ducing our own novel features. Further insights are proposed on which features work

best and why.

The first two contributions were part of the collaborative work between this thesis and

Guillaume Berthomet’s (see Section 1.1). The third one, however, was individual work

(entirely and only done by the author of this thesis).

1.4 Structure of the Thesis

This thesis tries to follow the classic structure of a research article, a perfect fit for a

research project.

The present introduction is followed by a chapter 2 presenting the necessary background

for the rest of the project: linguistic considerations will be discussed there, by engraving

in stone the most important definitions for the project; then, a full review of the state-

of-the-art, which is most crucial for the subsequent chapters, will be presented.

The methodology chapter 3 traces back how and why the project has been managed,

before disclosing in detail the different technical processes implemented to answer the

aforementioned research questions. Particular attention will be given to everything

concerning the automatic extraction of chiasmi candidates, the data and the resulting

dataset, and the automatic detection of rhetorically salient chiasmi. The various Machine

5Available at https://github.com/YohanMeyer/ChiasmusExtractor, visited on 18/01/2023.
6Available at https://github.com/YohanMeyer/AntimetaboleDetector, visited on 18/01/2023.

4
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1 Introduction

Learning models and features used for the detection part will be presented.

Afterward, the outcomes of various experiments concerning the candidates extraction

tool and the detection models will be submitted in the results chapter 4. The detection

phase will be broken down into three major parts: the evaluation of different versions of

the baselines, the evaluation of some baselines augmented with our novel features and

the evaluation of different models (with the baselines and the novel features).

Thereafter, a global interpretation of all these results will be presented (Chapter 5). The

different baselines will be dissected and their results will be explained in detail on the

main model, and the results of the main baselines will also be analysed when applied

to different types of models. This will be followed by a thorough analysis of the novel

features introduced in this thesis and their impacts on the predictions of the main model.

Thereafter, a complete walk through a regression tree model will be proposed.

In the last chapter 6, we will take a step back and take a critical look on the project

as a whole, whom we will dispute the strengths and weaknesses, and examine crucial

choices made during the project. The potential applications of this project and further

observations on public research will be discussed, before moving on to a more personal

appraisal of this project and its ins and outs. It will then proceed on offering suggestions

for different approaches or improvements for future research on the matters presented

in this thesis.

5



2 Background

2.1 Terminology

2.1.1 Chiasmus

What is a chiasmus? Many contradictory or complementary answers can be found in

dictionaries, articles and previous research. Let us hear what they all have to say.

The simplest definition may be given by the Collins Dictionary [11a]:

rhetoric

[chiasmus:] reversal of the order of words in the second of two parallel phrases

he came in triumph and in defeat departs

The Oxford English Dictionary reports a very similar one, borrowed from A. S. Wilkins

[Wil71a]:

Grammar.

A grammatical figure by which the order of words in one of two parallel

clauses is inverted in the other.

From these first two definitions, we can keep the consensual idea that a chiasmus needs

a reverse repetition of words. Nevertheless, some distinctions already arise with the

confusion between a phrase and a clause, and whether a chiasmus is a rhetorical or a

grammatical figure. But if we consider the example given by the Collins Dictionary,

6



2 Background

both definitions lack a crucial element: the inverted words do not have to (or must not

?) be identical.

Finally, the Merriam-Webster [22] has a very different and thus peculiarly interesting

formulation:

chiasmus: an inverted relationship between the syntactic elements of parallel

phrases (as in Goldsmith’s to stop too fearful, and too faint to go)

Here, the words become syntactic elements, and the inverted or reversed order becomes

an inverted relationship. The new example from Goldsmith [Gol64] thus appears much

more coherent, as the inverted elements {to stop, to go} and {too fearful, too faint} do

present a clear relationship (respectively antonymous and synonymous).

However, we still lack many crucial details and some controversies need to be worked

out; to that purpose, let us delve into linguistics and research, starting with Greene

(2012) [Gre+12]. Its first attempt at defining chiasmus (p.225) is much more complete,

more restricting in some ways and more open in others:

The repetition of a pair of sounds, words, phrases, or ideas in the reverse

order, producing an abba structure [...]

Indeed, we now see our figure pinned down to two pairs of undefined terms in a strict

ABBA pattern. But as the terms can virtually be anything, from sounds to ideas, it

also appears virtually impossible to detect all of them automatically. However, we can

find a slightly more restrictive definition, yet still very vague, from Kelly et al. (2010)

[Kel+10]:

A related figure, chiasmus, is defined as “[r]epetition of grammatical struc-

tures in inverted order” [...]

On another hand, Greene presents us yet another proposition borrowed from Thompson

(1995) [Tho95]:
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If, as Thomson prefers, we construe chiasmus more broadly as the bilateral

symmetry “of four or more elements around a central axis” [...]

Eventually, chiasmus may well be an inverted repetition of any number (still greater

than two) of literally1 anything. But such a definition will not get us anywhere.

To add more complexity, the entry from Greene continues with:

Although chiasmus frequently describes the repetition of particular phonemes

or the inversion of clauses, it is not uncommon to find that an entire poem or

novel has a chiastic structure or that several kinds of chiasmus are at work

simultaneously.

Now, this is definitely going too far for our purpose. For the sake of simplification and

clarification, we shall prefer using the terms Envelope or Ring Composition (found re-

spectively at pages 436 and 1201 of the same book) for figures that enclose material such

as poems, texts, novels, etc.

Hopefully, we may be able to sort out everything with the help of Nordahl’s essay

(1971) [Nor71], which has the ambition to “rehabilitate” the chiasmus along with defin-

ing it from top to bottom - and from bottom to top. Nordahl then distinguishes three

categories of chiasmi, each with its own subcategories: the rhetorical chiasmi, the gram-

matical chiasmi, and the semantic chiasmi. Unfortunately, this classification does not

help us in our quest for simplification, because the thirty different types of chiasmi are

among others comprised of what we call antimetabole (see Section 2.1.2), and of others

whose rhetorical effect (see Section 2.1.3) is more than dubious.

Let us try a final attempt with Dupriez (1980) [Dup80]. Its definition still includes an

inverse repetition, but of “syntactically identical segments of groups of words”, which

seems like a stricter and at the same time more permissive version of the Merriam-

Webster’s.

Ultimately, the only two assumptions we can reasonably make concerning the definition

of chiasmus are:

1The word literally should not be used lightly. Otherwise, its use could lose its literal meaning.
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• the reverse repetition of something ;

• the rest is up to you.

In order to render our goal of automatically detecting chiasmi feasible, we need to pin

down our own definition and focus on one specific type of chiasmus. Since we are

interested as well in antimetabole, it seems reasonable to limit our interest in chiasmi to

those closest to antimetabole, that is to say lexical chiasmi. Moreover, while preferring

to keep as much characteristics as wide as possible, previous research motivates us to

reduce the chiasmi terms to simple words for extraction purposes.

Hence our following definition:

A chiasmus consists of the repetition of two or more pairs of related words

in the reverse order.

2.1.2 Antimetabole

Now that we have tackled the mighty chiasmus, we are allowed to hope that defining

the antimetabole shall be easier. Nevertheless, this figure may be less well-known or

less common than chiasmus, as some dictionaries (such as the Merriam-Webster) do not

report it and other sources mark it, a little disdainfully, as a specific type of chiasmus.

Interestingly enough, the Collins Dictionary [11b] does not seem to distinguish our two

figures otherwise than by their name:

rhetoric

[antimetabole:] the repetition of words in reverse order for emphasis

When compared to its definition of the chiasmus, only the specification of “two par-

allel phrases” disappears, but nothing is said about the terms composing the figures

themselves. Fortunately, the Oxford English Dictionary [Wil71b] gives us more insight:

Rhetoric. A figure in which the same words or ideas are repeated in inverse

order.
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We notice that while the chiasmus is considered a grammatical figure by some, the

antimetabole would solely be a rhetorical figure. We can also note the similarity between

this definition for an antimetabole and Greene’s first one for the chiasmus, mentioning

a repetition of ideas, although the term remains very vague. Anyhow, we can already

confirm that the antimetabole and the chiasmus are intertwined with each other and

that both have the same default of being pretty troublesome to define.

To further investigate on the differences between chiasmi and antimetabole, Greene

(2012) suggests that an antimetabole may indeed only be a special case of a chiasmus,

that is a chiasmus where the paired elements are identical words - or almost identical,

with “variation in case or tense”. Dupriez (1980) [Dup80] points in the same direction

by bringing closer both figures, but specifies that the antimetabole consists of only two

pairs of words. On another hand, even if Rabatel (2008) [Rab08] agrees with the former

definition of chiasmus, its approach on the antimetabole appears even more restrictive:

the repetition would has to be in two successive clauses. Kennedy’s famous quote

(A) (B)

(1) Ask not what your country can do for you -

(2) ask what you can do for your country

(B′) (A′)

would therefore, according to this definition, stop being an antimetabole if we rephrase

it as

(A) (B)

(1) Ask not what your country can do for you -

(2) but, I say,

(3) ask what you can do for your country

As curious as it may seem, Rabatel carries on with saying that not all antimetabole are

in fact antimetabole - and there starts a witch hunt against false antimetabole, whose

terms would be interchangeable in the absence of any subordinate relationship between

them, such as:
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(A) (B)

White is black and

black is white .

(B′) (A′)

It is also worth noting that Kelly et al. (2010) [Kel+10] seems to agree with Rabatel:

An antimetabole is a “[r]epetition of words, in successive clauses, in reverse

grammatical order” [1]; an example of this figure: “I said what I meant,

I meant what I said” [18]. It should be clear from the example that the

structure of the phrase is important, as is the repetition of the same words.

[1] Burton (2007) [Bur07]

[18] Seuss (1968) [Seu68]

This article already hints at the rhetorical effect (see Section 2.1.3) which would be part

of the antimetabole’s definition, while also giving us the notion that said rhetorical effect

is as obscure as could be. “It should be clear”, but nothing really is.

So, in an effort to clear some things up, we will call up to Beauzée (1782) [BM82] with his

Encyclopédie Méthodique (p.198) based on the famous one from Diderot and d’Alembert

(1751-1772). This one surprisingly does not make any mention of the chiasmus, but

dedicates an article to a resembling figure, the “antimetalepse2”, and our antimetabole.

According to the Encyclopédie, the antimetabole is a figure of repetition where the words

of the second part change in order and function, where the antimetalepse is about ideas

rather than words. It also explains how one can switch from the antimetalepse to the

antimetabole (and from the antimetabole to the antimetalepse) by simply changing the

used words:

We should eat to live, and not live to eat [antimetabole]

We should eat to live, but not use every moment of our life to gorge ourselves

with food. [antimetalepse]

2A neologism used as no satisfying translation to English could be found for the French word an-
timétalepse.
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And together, these two figures would form the antimetathesis. This distinction has

the crucial advantage over the Oxford English Dictionary [Wil71b] and Rabatel (2008)

[Rab08] to put the antimetabole within our automatic detection reach and to make it

that much clearer. To put it in a more formal way, Harris et al. (2009) [HD09] proposes

the following:

Antimetabole: Repetition of words in reverse order.

[W]a...[W]b...[W]b...[W]a Drake loves loons. Loons love Drake.

As long as the matching words remain in Greene’s range of semi-open identicalness with

“variation in case or tense”, this definition seems very promising for our use case. To

make it our own, we would only need to add the idea (same as for the chiasmus) that

the figure should not be limited to two pairs, to expand our range:

Antimetabole: Repetition of words in reverse order.

[W]1...[W]2...[W]n...[W]n...[W]2...[W]1 Drake loves loons. Loons love Drake.

In order to mark the difference between the chiasmi and antimetabole from previous

research and our own, we will settle on calling chiasmi (and antimetabole) with more

than two pairs of terms nested chiasmi (and antimetabole).

2.1.3 Rhetorical effect

There still is a somewhat trivial but major problem with both definitions at which

we arrived. Indeed, if taken literally, our definition of the antimetabole would cover

any reverse repetition, even the most insignificant ones, and without any scope limit,

the number of occurrences grows ridiculously large with the number of words. Any

repetition of prepositions, conjunctions, pronouns, and articles, to cite only them, would

be classified as an antimetabole.

From a linguistic point of view, this is not problematic per se, as argue Harris et al.

(2018) [Har+18]. They take these two antimetabole to illustrate their point:
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[26] There are only two kinds of men:

(A) (B)

the righteous who think they are sinners

and the sinners who think they are righteous .

(B′) (A′)

(A) (B)

[27] You hear about constitutional rights, free speech

and the free press. Every time I hear these words I say to myself [...]

(B′) (A′)

The correct way to characterize 26 versus 27 in terms of Rhetorical Figures,

then, does not involve the presence or absence or degree of antimetabole.

[...] if antimetabole is reverse lexical repetition, as every definition ever

formulated has it, then both 26 and 27 exhibit antimetabole.

If we take our figures definitions stricto sensu, it makes sense to put all repetitions, re-

gardless of their meaning and context, on the same level. However, we are not interested

in detecting all antimetabole and all chiasmi, only those we deem interesting enough. It

then becomes apparent what our previous definitions are lacking: we still have to define

what is a rhetorical effect, the same effect that makes our figures worth detecting, and

which promotes the “grammatical” figure to the rank of “rhetorical” figure. In the end,

we are not so much interested in simply extracting chiasmi and antimetabole from plain

text, but above all in detecting the instances that detain a powerful rhetorical effect.

Hence the title of this thesis: “detection of chiasmi’s rhetorical salience”.

Greene (2012) [Gre+12] and Ruan et al. (2016) [RDH16] give us hints on what this

mysterious rhetorical effect may be about: the former suggests that antithesis mixes up

well with antimetabole, and the latter goes further by naming it:

We call this phenomenon, when figures pile on other figures, stacking.
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Antimetabole in particular would have a tendency to be stacked with mesodiplosis and

antithesis3, for which Harris et al.’s [26] is a perfect example. But if this stacking explains

how a figure’s rhetorical effect can benefit from other figures, it does not suffice to express

a standalone figure’s effect, such as Samuel Johnson’s very short antimetabole4, where

no apparent mesodiplosis or antithesis supports the figure:

It made Rich gay and Gay rich.

The complication here lies in how rhetorical figures in general and our two in particular

can serve many different purposes with each their own intent and effect.

To illustrate the former, Mitrović et al. (2017) [Mit+17]5 point out that rhetorical fig-

ures (and schemes in particular) can either “affect the audience’s rational perception of

a standpoint”, “constitute or emphasize arguments”, or even “epitomize arguments in

their form”. Circling back to Appendix B, chiasmi’s or antimetabole’s effect could be

measured by the way they seem appealing, convincing, or well put.

On another hand, Ruan et al. (2016) [RDH16] propose four different rhetorical functions

to describe antimetabole’s effects (Reciprocal Force, Reciprocal Specification, Compre-

hensiveness, Irrelevance of Order), which can also be practical means of separating the

wheat from the chaff.

Nevertheless, when it will come down to annotation, these leads will not help us getting

completely rid of the subjectivity underlying it all. In a sense, rhetorical effects can only

be subjective in that they have different meanings and trigger different reactions in each

of us. The subsequent problem of obtaining annotated data without spoiling it with our

biases will be addressed in Section 3.3.

2.2 State of the Art

2.2.1 Rhetorical Figures

Let us now take a step back and wonder where our interest for our two figures, namely

chiasmus and antimetabole, comes from. Here, we consider two groups of tasks linked

3A curious reader may find definitions for both of these figures in the Glossary (Appendix A).
4This was said about John Gay, the author of ”The Beggar’s Opera” that was rejected till John Rich,
the theatre director, helped make it a success [Gro02].

5Any conflict of interest or any relation to the first examiner of this thesis is purely coincidental. This
paper is only cited for its objective academic excellence and pertinence.
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to rhetorical figures: data-driven detection / extraction and ontology-based modelling.

The former (e.g. [Dub13; DN15; DN16; DN17; DN18; Sch+21]) should help deepening

our understanding of them from an empirical point of view. The latter (e.g. [HD09;

MM13; KMG22; Wan+22]) are based on a deeper linguistic expertise allowing to better

exploit the obtained results. Thus, instead of only trying to detect rhetorical figures in

pieces of text, these approaches aim at modeling these figures; instead of trying to ex-

tract rhetorical figures and some statistical insights about them from raw corpora, these

ontologies rather focus on extracting knowledge. In the same way that these approaches

may differ, they are also complementary - when they do not overlap.

Harris and Di Marco (2009) [HD09] are certainly pioneers in this domain, their article

being followed by a series of other works of the authors pursuing the same goal: building

“A Cognitive Ontology of Rhetorical Figures” (Harris et al., 2017) [Har+17]. Their on-

tology was built in OWL (Web Ontology Language) using a bottom-up approach, after

having tested both top-down and middle-out techniques. The “cognitive” part comes

from the ontology being organized around “cognitive affinities” (reported examples are

repetition, similarity, and contrast) that are, as the authors argue, part of the essence

of rhetorical figures. The ontology thus combines these different affinities in order to

classify and define many rhetorical figures. However, as every figure may leverage these

cognitive affinities differently (for instance, a repetition can have a semantic, lexical or

syntactic nature), the ontology also maps every pair consisting of a rhetorical figure and

of an affinity to a mode, representing how the former uses the latter.

Following the inspiration of Harris and Di Marco (2009), Mladenović and Mitrović (2013)

[MM13] developed the Ontology of Rhetorical Figures for Serbian (why should the En-

glish language be the only centre of attention?). Their article allows them to introduce

RetFig, “a formal domain ontology for rhetorical figures for Serbian”, with the principal

motivation to enrich and develop the fields of argument and opinion mining, as well as

semantic analysis. Their ontology was built upon a manually retrieved and annotated

database of 98 different rhetorical figures, each corresponding to a rhetorical type and

a linguistic category. Both like and unlike Harris et al. (2017), the ontology was con-

structed manually with OWL 2 and with a top-down methodology. Thus, while the

bottom-up approach starts from specific instances of rhetorical figures (Harris et al.’s

very first was an antimetabole!) to build their model because their “instances were not

falling into neat categories”, Mladenović and Mitrović rather started by creating a taxon-

omy of linguistic and rhetorical concepts. From there, many elements and relationships

taken from linguistics were manually inserted into the ontology, allowing for finer and
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finer definitions, and eventually developing a formal model of rhetorical figures. This

model could then be exploited through SPARQL (SPARQL Protocol and RDF Query

Language) queries, providing a precious help for the annotation of rhetorical figures, and

for statistical studies (through rhetorical figures, obviously) of a text.

A much more recent work on an ontology of rhetorical figures, this time for the German

language (each in its turn), was published last year by Kühn et al. (2022) [KMG22].

As one of the authors participated in the ontology for Serbian, GRhOOT (the German

RhetOrical OnTology) was based on RetFig. Where RetFig handled 98 figures, GRhOOT

took it a step further by managing 110 different figures. Furthermore, their approach “al-

lows for an easy extension or translation into other languages”, leaving similar ontologies

to be developed in different languages (as a French student, I certainly have a preference

for one). Without surprise, the tools and methodology used to build GRhOOT are the

same as for RetFig. However, the mapping of the modeled rhetorical figures in both

languages remains challenging, as only 60 figures have an identical representation in

both ontologies - and even then, they may have different properties. Therefore, even if

the translation is rendered easier by design, building an ontology in another language

remains time-consuming and still requires linguistic expertise. Lastly, Kühn et al. test

their ontology with competency questions, the same way as Mladenović and Mitrović.

In addition to thoroughly checking the validity of the ontology, it also allows for a direct

comparison between ontologies, and thus for an analysis of the differences between lan-

guages when it comes to rhetorical figures. Eventually, as mentioned above, this article

recalls that their approach may overlap with the one we follow in this thesis:

It can be used to develop a rule-based approach for rhetorical figure detection.

It can also be used to guide people to identify rhetorical figures. Therefore,

it can support human annotators, too.

As we will see in subsequent sections and chapters, identifying and annotating rhetorical

figures was a main challenge of this thesis, and rule-based approaches for antimetabole

detection are also part of the models presented in Chapter 3 - although their construction

differs a lot.

Now that we have a global overview of how to model rhetorical figures, we may go back

to the two that interest us above all: chiasmus and antimetabole.
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2.2.2 Chiasmus and Antimetabole Detection

In this Section, we overview the existing approaches of chiasmus/antimetabole automatic

detection discussing them in chronological order.

Before 2013

To the best of our knowledge, Gawryjo lek (2009) [Gaw09] was the first to grow interest

in the automatic detection of antimetabole, for which he gives the same definition as

Harris et al. (2009) - see Section 2.1.2). Gawryjo lek starts simply with his antimetabole

detection by choosing to take into consideration all matching repetitions he could find,

and only those of exactly matching words. Although, using the same reasoning as

we did in 2.1.3, he recognizes that this method “produces a lot of antimetabole that

are not necessarily important from the rhetorical point of view”. Taking all this into

consideration, Gawryjo lek’s algorithm ends up being more accurately described as a

salient antimetabole candidates extraction tool rather than as an antimetabole detector,

since his ultimate goal is not to extract all antimetabole from a text, but only the

“important” ones. The distinction has its importance, as it will likewise assist our own

work. Thus extracting candidates, Gawryjo lek is left with the task of selecting the

best antimetabole out of his candidates, and developed to that end JANTOR (Java

ANnotation Tool Of Rhetoric).

In an effort to make a similar but multilingual extraction tool, Hromada (2011) [Hro11]

undertook the path of PERL-compatible regular expressions, applied to four schemes

of repetition (anadiplosis, anaphora, epiphora and antimetabole). For the figure that

interests us (if you thought about something else than antimetabole, you should consider

reading more slowly), Hromada does not make matters easy by taking Gawryjo lek formal

description but rather adds his own to the list:

one can formalize it as follows:

< WAWBWC...WCWBWA >

He then gives the example of “Alle wie einer, einer wie alle.”6 to illustrate his point.

This definition is much stricter than our own given in Section 2.1.2, and actually appears

to be mixing antimetabole with mesodiplosis while forcing the antimetabole terms to

6German for “All as one, one as all.”
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be juxtaposed. This method still allows Hromada to find some instances in his dataset,

composed of four corpora of famous writers (Shakespeare for English, Goethe for Ger-

man, Molière for French, and Cicero for Latin). But still unlike Gawryjo lek, he does

not seem to be interested in his antimetabole’s rhetorical salience. The only mention

of “false positives” concerns an epiphora that was matched on a character’s name (as a

caption) in a play.

Dubremetz (2013)

In her first article, Dubremetz (2013) [Dub13] starts a long and productive series of

experiments on chiasmi detection. Unlike her predecessors, Gawryjo lek and Hromada,

Dubremetz attempts to develop an actual detection rather than a mere extraction tool

and filters out uninteresting chiasmi, which she calls “pseudo-chiasmi”.

She builds her algorithm for French language on top of Gawryjo lek’s idea and adds three

major improvements:

• the restriction of the length for chiasmi candidates to 30 tokens;

• the introduction of stopwords to filter out candidates in which one term is in the

stopwords list;

• the analysis of punctuation, by filtering out a candidate if hard punctuation is

found between two non-central terms of the antimetabole.

The algorithm is tested on a corpus put together by Dubremetz for the occasion, taking

fourty-three chiasmi in total (36 antimetabole and 7 chiasmi according to our defini-

tions) from dictionaries, previous research or extracts of well-known poetry. To expand

her algorithm beyond “strict antimetabole” (based on an exact word match), Dubremetz

successfully makes use of a lemmatizer, and less successfully of a stemmer (due to the

stemmer’s performance in French). Dubremetz uses the French lemmatizer Flemm by

Namer (2000) [Nam00] coupled with the TreeTagger by Schmid (1994) and allows her

algorithm to take plain text as input. Eventually, she even tries to detect (what we

call) chiasmi and not only antimetabole, by searching for chiasmi whose terms are syn-

onymous. However, her use of OpenOffice’s thesaurus yielded unsatisfactory but still

interesting results. Moreover, it was also made apparent that the extraction of chiasmi

candidates gives a disproportionate number of uninteresting ones due to the affinity

between common words (so, like, such...)
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Dubremetz & Nivre (2015)

It is regrettable to see that in Dubremetz and Nivre (2015) [DN15], Dubremetz seems

to have cast aside the linguistic rigor that led her in 2013 to distinguish four variants

of figures for antimetabole and chiasmi. This time, although she only focuses on an-

timetabole, she puts everything under the name of “chiasmus” for the sake of simplicity.

However, this misuse is easily forgiven when considering the confusion ruling over the

definition of the chiasmus (see Section 2.1). Back on the hunt for antimetabole, then,

Dubremetz and Nivre first identify three major hurdles to overcome:

• The rareness of chiasmi, for which their proof is an analysis of a corpus of 130

000 words (and 66 000 extracted inversions) that would contain only 1 salient

antimetabole;

• The number of false positives obtained through the extraction of candidates (1

true positive for 66 000 false positives in the same example);

• The lack of annotated data and the difficulty to provide said annotated data.

In the face of these issues, the authors decided to adopt a ranking strategy, inspired

from information retrieval techniques. Instead of binary classifying candidates as salient

or not salient (which we deem more accurate than “true” and “accidental” chiasmi),

Dubremetz and Nivre’s algorithm now gives each candidate a saliency score, calculated

with four types of features.

The first type of features is simply taken from the previously seen article (Dubremetz,

2013); the second takes into account the number of words between terms of the an-

timetabole; the third one looks at N-grams for repetitions apart from the antimetabole

itself, following Hromada’s interest for mesodiplosis; the last one reviews negations and

conjunctions that would “underline the axial symmetry”, based on various definitions

and research about chiasmi.

The algorithm used to extract candidates from text has not changed much, contrarily

to the corpus: now working in English, the authors chose Europarl (4 million of words),

a corpus of political discussions. And even though the core of the extraction program

has not changed, it now only uses the TreeTagger by Schmid (1994) [Sch94], since no

additional program specialized for French is needed. All extracted candidates are then

fed to the new scoring function, whose weights were manually fitted.

Concerning the evaluation of the model, it is computed on the “top 200 hits given by the

19

https://www.europarl.europa.eu/portal/en


2 Background

machine”. However, the algorithm output being based on a ranking, it is not possible

to simply compute the recall and precision like for any classification task; or, to make it

possible, a threshold would have to be defined over which a score would be considered

sufficient to make the candidate tagged as “positive” and “negative” if the candidate’s

score is below the threshold. This method presents the major disadvantage of being

heavily dependent on the threshold’s value, which would have here to be empirically set,

and reevaluated every time that the weights or features are revised. Moreover, its value

would not have any meaning in itself, and could make the interpretation of the results

as unreliable as impractical.

Accordingly, Dubremetz and Nivre decided to further draw inspiration from information

retrieval methods in Croft et al. (2010) [CMS10]. In their book, Croft et al. describe

several methods of evaluating search engines, based on a ranking system similar to

Dubremetz and Nivre’s implementation:

The third method, and the most popular, is to summarize the ranking by

averaging the precision values from the rank positions where a relevant docu-

ment was retrieved (i.e., when recall increases). If a relevant document is not

retrieved for some reason, the contribution of this document to the average

is 0.0. [...] Average precision has a number of advantages. It is a single num-

ber that is based on the ranking of all the relevant documents, but the value

depends heavily on the highly ranked relevant documents. This means it is

an appropriate measure for evaluating the task of finding as many relevant

documents as possible while still reflecting the intuition that the top-ranked

documents are the most important.

Apart from the last point, i.e. that the candidates with the highest scores are most

important, this method seems perfectly appropriate for the task at hand. In this case,

a relevant document that would not be retrieved in the top 200 candidates (with regard

to their score) would have a contribution of 0.0 to the average precision.

With all this in mind, Dubremetz and Nivre show that all their features improve the

recall and the average precision, as can be seen in the figure C.3 (appendix C.2). In their

gradation experiment, where they compare different versions by adding one feature after

the other, it is difficult to guess which features contribute the most to the global average

precision in this experiment, since the order for adding the features matters. However,

all three features seem to improve the results substantially, suggesting that they are all

relevant. But even the best results leave plenty of room for improvement, with a recall
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of 90% (17 out of 19) and an average precision of only 61% for the top 200.

Moreover, the very limited dataset and the manual setting of the weights make the

experiment quite unreliable. The previously identified issues are thus far from being

tackled yet.

Dubremetz & Nivre (2016)

In their subsequent article, Dubremetz and Nivre (2016) [DN16] “start from the shallow

feature-based algorithm introduced by Dubremetz and Nivre (2015) and extend it with

features based on syntactic structure.” This work can be seen as a plain improvement

of their own past research, whether it be on the data, on the model or on the results.

Concerning the datasets, Dubremetz and Nivre reuse their annotated corpus of four

million words extracted from Europaparl (see Section 2.2.2), but instead of splitting it

in two for training and evaluating their ranking model, they dedicate it entirely to the

training. Therefore, they annotate another extract from the same source consisting of

two million words for the testing phase. Moreover, they also test their trained model on

a completely different dataset coming from literature: the Sherlock Holmes novels and

short stories by Conan Doyle. No precision on their choice or its relevance is given, but

this new corpus is supposed to be an archetypical literary text, used for testing how well

their model can generalize on another genre.

Their model needing additional input compared to its previous version (having only a

lemmatizer), Dubremetz and Nivre replace the TreeTagger by the Stanford CoreNLP

toolkit by Manning et al. (2014) [Man+14], which allows for Part-of-Speech tagging.

However, the antimetabole candidates extraction tool remains the same - except for a

new visual feature helpful for annotation. But this new addition does not come without

a cost: at the time, it took them days to process 2 million words.

Regarding the rating model used for detecting the antimetabole, the authors use the

exact same previously described methodology, and add to it two novel features based on

Part-of-Speech tags and syntactic dependencies. In addition to sharing the same lemma,

Dubremetz and Nivre thus hypothesize that the matching terms of an antimetabole

should share the same grammatical category, and add an extra weight if all four terms

share the same Part-of-Speech tag. However, this weight could also promote a lot of usual

uninteresting antimetabole, notably composed of four common words such as articles,

verbs or determiners; this effect could for instance counterbalance the stopwords feature.

Following the same logic of chiastic symmetry going beyond the semantics, this time
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focusing on repetition rather than inversion, Dubremetz and Nivre reward antimetabole

whose dissimilar terms have the same syntactic dependency and penalize those whose

matching terms have the same dependency. This hypothesis is motivated by the analysis

of the following antimetabole by Winston Churchill:

(A) (B)

Ambition stirs imagination nearly as much as

imagination excites ambition .

(B′) (A′)

Here, as the terms are repeated and inverted, they both apply the same force on each

other (ambition stirs and imagination excites), serving the function Harris et al. (2018)

[Har+18] call “Reciprocal Force”. In the second clause, the repeated words thus ex-

change their place and take the same syntactic dependency as their counterpart.

Their training corpus only contains 31 instances of what Dubremetz and Nivre call

“true chiasmi”, and is therefore not suited for classical machine learning algorithms,

which would not have enough to work with. As in their previous work, they chose to

tune the new features’ weights manually. However, their testing set only contains 13

instances annotated as True, reiterating the issue of reliability that occurred in their

previous article. Indeed, a considerable shift of 8% in recall only translates the fact

that the model was able to detect one more salient antimetabole. And it is exactly what

happens - with both new features, the model now catches the following salient instance

in its top 200-rated candidates pool:

(A) (B)

Do not imagine, however, that legitimacy in itself creates democracy .

Rather, it is democracy which creates legitimacy .

(B′) (A′)

Obviously, the two new features are “tailored” for this instance: the four terms share

the same Part-of-Speech tag (noun) and their dependency structure is also a perfect fit
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(same for the first and third, same for the second and fourth, and different for matching

words). At this point, it should be clarified that we are not trying to imply anything

about Dubremetz and Nivre’s work. However, it simply has to be pointed out that an

increase in recall and (thus in) average precision, with a testing set of only 13 instances,

should not mean much, if even anything.

All that being said, the progress made with only two new features seems remarkable:

as we can see in the figure C.4 (appendix C.3), both features improve significantly

the average precision when taken separately. The “tag features” improve the average

precision by 17 points7 and the dependency features by 22 points. Although when all

features are mixed, the average precision only increases by 25 points, which is only 3 more

than with the dependency features. This may suggest that both features give generally a

better score to similar instances, like the aforementioned example. Furthermore, in their

generalization experience, Dubremetz and Nivre evaluate their model on the Sherlock

Holmes set, which only contains 8 positive instances. Once again, the improvement

of 17 points (see figure C.5, appendix C.3) for the average precision over the baseline

should not lead to any hasty conclusion, as a test set of merely 8 instances may be so

imbalanced that the evaluation becomes completely biased.

Moreover, the core of the previous example and the idea that motivated the addition

of these features could well be what Harris et al. (2018) [Har+18] theorized two years

later as the rhetorical function Reject-Replace:

For instance, when antimetabole collocates with mesodiplosis and antithesis,

the combined function is primarily to reject the negated predication utterly

and replace it with the positive predication.

Reject–Replace

We don’t build services to make money; we make money to build better

services. (services/make money ; to; We don’t X, we X’)

When looked closer at, this rhetorical function does directly point at these Part-of-Speech

and dependency features: in order to “reject” the first predication and “replace” it, the

four antimetabole terms must have the same Part-of-Speech tag and the dependency

structure described earlier. Eventually, these new features do not so much improve the

model’s overall efficiency, but rather allow it to detect a “new type” of antimetabole,

should we classify them by their rhetorical function.

7and not by 14, as is indeed showed in the table taken from the article.
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Dubremetz & Nivre (2017)

In the last article from their series about chiasmi (leading to a PhD thesis (Dubremetz,

2017) [Dub17]), Dubremetz and Nivre (2017) [DN17] eventually end up having enough

annotated data to apply Machine Learning methods to their detection model. Using

the same corpora and features as in 2016 for training, they only take the test set from

Europarl and do not reuse the Sherlock Holmes corpus.

Their model consists of a simple binary logistic regressor: an instance is either considered

true or false. They report trying support vector machines (SVM) with various kernels

instead of a logistic regressor but with similar results. The implementation was done

using scikit-learn (Pedregosa et al., 2011 [Ped+11]), a widely popular Python library for

classical Machine Learning. In order to make the most out of the 31 positive instances

for the training phase, it was conducted using two-fold cross-validation.

The main goal of this article was thus to compare the results of models using the same

features two by two, one with manually hand-tuned weights and the other with com-

putationally learned weights. As expected, the results in the figure C.6 (appendix C.4)

show that the machine-learning-based model outperforms the hand-tuned ones. This

difference is most significant for the baseline (Dubremetz et al., 2015), with an improve-

ment of 15 points for the average precision, but shrinks considerably to 3 points when

all features (Dubremetz et al., 2016) are used.

Concerning the weights of the features, small and expected differences between the hand-

tuned and the learned values explain the 3% improvement in average precision, but a

surprising result lies within a baseline feature: #sameTrigrams. This feature represents

the number of trigrams that are identical in the intermediate spaces between the first

and second terms (respectively A, B) and the third and fourth terms (respectively B’, A’)

of the antimetabole. Intuitively, this feature was set as positive during the hand-tuning

(like all features under the “Similarity” section that look for a sort of mesodiplosis), but

the machine-based learning set this one in particular as negative. However, this sort

of result is not exceptionally surprising considering the size of the training set (31 true

instances).

Schneider et al. (2021)

To this day and to the best of our knowledge, the most recent English article con-

cerning automatic chiasmi detection was written by Schneider et al. (2021) [Sch+21].
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The distinction made in the Terminology section 2.1 between chiasmi and antimetabole

now becomes of the utmost importance, since Schneider et al. actually try to adapt

Dubremetz and Nivre’s (2017)8 work on antimetabole to chiasmi. Their exact definition

of a chiasmus, very similar to ours, was borrowed from Fauser (1994) [Fau94]:

Chiasmus is defined as an inversion of semantically or syntactically related

words, phrases, or sentences in an A B B’ A’ pattern.

Just like Dubremetz and Nivre, Schneider et al. restrict their definition of a chiasmus to

four words (since they disregard phrases and sentences). What’s more, they also make

the distinction between extracting (or “searching for”) chiasmi candidates and detecting

salient chiasmi (or “filtering the candidates”). Indeed, these two phases are harder to

merge since the method proposed by Schneider et al. for extracting candidates is very

different from Dubremetz and Nivre’s.

Indeed, tasked with finding chiasmi rather than antimetabole, the authors of this article

chose to search not for identity of lemmas, but rather for “inversions of part-of-speech

(PoS) tags in an A B B’ A’ pattern”. Therefore, they chose to focus on the syntactical

part of their own definition rather than on the semantic part. With this method, they

announce finding much more candidates (and thus “false positives”) than Dubremetz

and Nivre, with among them chiasmi as well as antimetabole.

Their filtering model uses Dubremetz and Nivre’s features as a baseline. Since the

extraction algorithm does not rely on lemmas anymore, they add them as a lexical

feature for their model. A binary feature thus captures identities of lemmas between

all six possible pairs of the chiasmi’s terms. Moreover, since the baseline and the new

feature do not allow them “to distinguish true chiasmi from random PoS tag inversions”,

they add an embedding feature to capture, as per their definition, any semantic relation

between the terms:

For each pair of supporting tokens, we add an embedding feature equaling

the cosine similarity (Salton et al., 1975) [SYY75] of the word embeddings

of the two tokens.

8The authors rather cite Dubremetz and Nivre (2018), but as far as antimetabole are concerned,
nothing changed since Dubremetz and Nivre (2017).

25



2 Background

At this point, one can be wondering why Schneider et al. chose to extract their can-

didates with PoS inversions and to filter them with embedding features, and did not

extract candidates with embedding inversions and filter them with PoS features (easy

but tempting). Indeed, even if it is legitimate to base a definition of a chiasmus on

a syntactical inversion (see Section 2.1.1), in the context of detecting chiasmi with an

interesting rhetorical effect, it does not appear to be relevant at first glance. The inver-

sion of semantically related words, however, seems to make more sense, since it is much

easier to recognize for a human brain. Furthermore, they use this second approach to

explain their first example:

[Chiasmus] can be used, for example, to emphasize contrasts. One example

for it is:

Eng ist die Welt,

und das Gehirn ist weit

(Narrow is the world,

and the brain is wide)

Wallensteins Tod (Schiller, 1799)

The semantically related words are narrow and wide, as well as world and

brain.

As we can see, even if the chiasmus’ terms present a PoS inversion, it is indeed the

semantic aspect that gives the chiasmus its rhetorical salience.

To evaluate their model, Schneider et al. use the same strategy and the same imple-

mentation tools as Dubremetz and Nivre. Their results can be found in the figure C.7

(appendix C.5). At first glance, it is interesting to note that even with their additional

features, Schneider et al.’s model does not manage to outperform Dubremetz and Nivre’s

on their own dataset when detecting antimetabole (though they do not underperform

either), because their features do not really bring anything new to the model when all

candidates were already extracted based on a lemma inversion. In this experiment, the

average precision was calculated with the top 100 rated candidates (and not the top 200

like Dubremetz and Nivre used to do). However, on the new corpus consisting of four

Schiller dramas, Dubremetz and Nivre’s model is clearly outperformed, even for plain

antimetabole detection: an average precision of only 21% is achieved whereas Schneider

et al. manage to get up to 49%. That being said, it is impossible to know if the difference

is due to the addition of the new features or to the fact that Dubremetz and Nivre’s
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model performs less well on a German corpus, since the four Schiller dramas used for

the experiment are indeed in German.

The reasoning also holds for the article’s second experiment, which is about evaluating

the models’ generalization. The results, reported in the figure C.8 (appendix C.5), show

that the extraction method based on PoS inversion coupled with the new features de-

scribed earlier enable a much better recall for finding chiasmi as well as antimetabole...

in German corpora. Nonetheless, it is still worth noting that both approaches hold their

ground when confronted with unseen texts, considering the number of salient instances

found in the GerDraCor corpus when trained only on Schiller dramas. But since the

annotation is based on the best model’s output, we still have no way of knowing if the

GerDraCor corpus (or even the Schiller dramas, for that matter) contains many more

undetected chiasmi, and thus of knowing how well both approaches actually perform.

From Chiasmus to Epanaphora and Epiphora

In their last published article, Dubremetz and Nivre (2018) [DN18] try to adapt their

work on antimetabole to other repetitive rhetorical figures: the epanaphora (or anaphora)

and the epiphora (or epistrophe). Similarly to the translation of ontologies for rhetori-

cal figures in different languages (see Section 2.2.1), it is of particular interest to us to

see whether all of our work done for the detection of chiasmi and antimetabole can be

“translated” for other rhetorical figures, and to determine how easy and efficient it may

be. For their experiment, Dubremetz and Nivre thus chose two schemes based on repe-

tition rather than symmetry to try and exploit their findings on antimetabole. For the

sake of simplification, we will only focus on their definition of epanaphora and epiphora:

Epanaphora is defined as the repetition of a word or a group of words at the

beginning of successive sequences of language [...] In this paper, we limit the

scope to epanaphora of sentences, exemplified in Example 1.

(1) I am an actor. I am a writer. I am a producer. I am a director. I am

a magician.

At the opposite end, epiphora is the figure of speech of repetition at the end

of a sequence (see Example 2).

(2) I’m so gullible. I’m so damn gullible. And I am so sick of me being

gullible.
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Fortunately, the definitions of epanaphora and epiphora seem to be simpler and more

consensual than those of chiasmi and antimetabole. Moreover, this simplicity is also re-

flected in the problem of their detection: in 2011, when antimetabole detection was tack-

led with PERL-compatible regular expressions (Hromada, 2011 [Hro11]), epanaphora

was already being detected with Machine Learning techniques by Strommer (2011)

[Str11], whose work inspired several ideas in Dubremetz and Nivre’s latest article.

As their chapter about chiasmus detection presents the same methodology and results

as their precedent article, we will solely focus on their chapters about epanaphora and

epiphora. Likewise, the ranking approach, the model and its evaluation method are

essentially the same for the three figures. However, the features used for detecting an-

timetabole undoubtedly have to be different if we mean to detect different rhetorical

features, even if they do present similarities.

Concerning the candidates extraction, only the repetition of a lemma at the beginning

or end of successive sentences are considered. As can be expected, this condition is much

stronger than the one for antimetabole extraction and results in much fewer candidates

as well as a much higher concentration of salient instances, as can be seen in the figure

C.9 (appendix C.6). These preliminary results also suggest that epanaphora is more fre-

quent than epiphora (four times more candidates), while having a smaller concentration

of salient instances. This is partially explained by the fact that half of the candidates

are due to the presence of The at the beginning of sentences. Because of such others

complications, the authors decided to eventually restrict their extraction of epanaphora

to the repetition not of at least a lemma, but of at least two identical words, bringing

their number of candidates to be comparable with that of epiphora. The number of

antimetabole candidates, on another hand, completely dwarfs that of the two others

(200 times more candidates).

Dubremetz and Nivre use the same features for detecting epanaphora and epiphora, for

a total of eight features:

1. Sentence count: [...] the number of sentences exhibiting a repetition ;

2. Strong punctuation: [...] counts the number of sentences that end with a

“strong” punctuation mark (! or ?) ;

3. Sentence length: [...] measures the average number of tokens per sentence

in the sequence ;
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4/5. End [and start] similarity: counts the number of successive identical

lemmas at the end [and beginning] of adjacent sentences, averaging over all

such pairs in the sequence ;

6. End tag similarity: [...] analogous to the end similarity feature but looks

at part-of-speech tags instead of lemmas ;

7. Same strict: [...] a binary feature that is 1 if the last word of the sentences

in a sequence has the same form as well as the same lemma ;

8. Diff on end [or start] similarity: [...] it counts the number of identical

lemmas at the end [or start] of sentences but then divides it by the number

of lemmas that do not reappear in the other sentence.

We can observe that the first three features look very similar to some features used

for antimetabole detection, and form the baseline used for the evaluation experiment;

concerning the other features, they also seem to have been adapted from antimetabole

detection to take into account the specifics of the two new figures, with the exception of

the last one (“Diff on End” for epanaphora or “Diff on Start” for epiphora) that is truly

specific to these two figures. Surprisingly (or not), it is the latter feature coupled with

the baseline (though with the “Length” feature removed) that brings the best results for

epanaphora, as can be seen in the figure C.10 (appendix C.6). This feature was also the

most important one for epiphora, although by a much smaller margin: the best detection

model for epiphora indeed used all the previously cited features, as can be seen in the

figure C.11 (appendix C.6).

Furthermore, these results show that even though their work carried out on antimetabole

did not prove to be entirely satisfying for related rhetorical figures, it still allowed the

authors to efficiently build a strong baseline for future research. As can be seen in the

figures C.12 and C.13 (appendix C.6), the difference in average precision between an-

timetabole and both epanaphora and epiphora remains considerable: 13 points more

than the former and 23 points more than the latter. However, these results are com-

parable to those obtained for earlier detection of antimetabole: in 2015, Dubremetz

and Nivre had achieved an average precision of 61% for antimetabole, compared to an

average precision of 58% for epanaphora in this experiment.
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2.2.3 Stanza

From 2016 to 2018, Dubremetz and Nivre ([DN16], [DN17], [DN18]) used the Stanford

CoreNLP toolkit by Manning et al. (2014) [Man+14] in their extraction tool as a means

of pre-processing their data. They used it for parsing, lemmatizing and getting Part-of-

Speech tags from their raw text.

In 2020, the Standford NLP Group released a new tool called Stanza (Qi et al., 2020

[Qi+20]), “an open-source Python natural language processing toolkit supporting 66

human languages”9. Essentially, Stanza has the same basic functionalities as the Stan-

ford CoreNLP toolkit with better performances, adapted to more languages, and with

further additional features. Therefore, we reasonably decided to use Stanza rather than

the Stanford CoreNLP toolkit to develop our chiasmi candidates extraction tool. Let us

introduce its features that will be of use later:

Tokenization and Sentence Splitting. When presented raw text, Stanza

tokenizes it and groups tokens into sentences as the first step of processing.

[...]

POS and Morphological Feature Tagging. For each word in a sentence,

Stanza assigns it a part- of-speech (POS), and analyzes its universal mor-

phological features (UFeats, e.g., singular/plural, 1st/2nd/3rd person, etc.).

[...]

Lemmatization. Stanza also lemmatizes each word in a sentence to recover

its canonical form (e.g., did→do). [...]

Dependency Parsing. Stanza parses each sentence for its syntactic struc-

ture, where each word in the sentence is assigned a syntactic head that is

either another word in the sentence, or in the case of the root word, an

artificial root symbol. [...]

The usage of Stanza is made easy thanks to its intuitive implementation and complete

documentation10. To initialise a pipeline, it is not necessary to download the provided

pre-trained models at every run, once is enough. A code extract is available in the

appendix D.1. With only ten lines of code, it is possible to get an iterable object of Words

9Available at https://github.com/stanfordnlp/stanza, visited on 04/12/2022.
10Available at https://stanfordnlp.github.io/stanza/index.html, visited on 04/12/2022.
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containing a whole pre-processed text. The details of each processed word (lemma, PoS

tag, syntactic dependency...) is then directly accessible through each Word object.
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3.1 Tools and Project Management

The main part of this project was conducted using our own and very special variant of

the Agile methodology (Beck et al., 2001 [Bec+01]). The developments were made in

sprints of one week each, punctuated by general meetings where progress reports were

made and the goals for the next sprint were defined. This allowed us to keep in touch

regularly with our supervisors, seek their help and guidance when needed, and always

work toward a concrete goal. It also pushed us to get to a stable version of our code

each week, which reduced time losses in case of reverting to earlier working version.

Holding these weekly meetings also helped a lot mentally, to keep us focused and moti-

vated, as it may be hard to do when working autonomously and remotely.

Concerning the software development phase of this project, the tools that were used are

the following:

• GitHub for sharing the code and working collaboratively;

• Atom 1.63.11 as an Integrated Development Environment and Python 3.10.5 as

the programming language;

• Doccano 1.8.0 and Docker 20.10.20 were used for annotating the dataset;

• Discord, emails and Zoom were used for communication and meetings.

The code can be found in the following GitHub repositories: ChiasmusExtractor for the

extraction pipeline and AntimetaboleDetector for the ranking models.

Ultimately, this thesis itself was written using LaTeX (Overleaf).

1It was announced that Atom would be sunset and all projects under the organization archived on
December 15, 2022. Being an Atom user for many years, this is a tough goodbye.
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Figure 3.1: Entire chiasmi candidates extraction pipeline, beginning with a raw text file
(gray module).

3.2 Automatic Extraction of Chiasmi

3.2.1 Use Case

As can be seen in the figure 3.1, our chiasmi candidates extraction pipeline is comprised

of several steps, scripts and output files. Let us try to make sense out of it with a

complete use case.

Everything starts with a .txt file containing a raw text, from which we wish to extract our

chiasmi candidates. We feed it to the first script (Chiasmi candidates extraction), which

will pre-process the text, parse through it, retrieve all the candidates it can find and

place them in a JSON Lines file (Chiasmi candidates). Each line contains a candidate,
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and each candidate contains a lot of data:

• the 30-token context in which the candidate was found (plain text),

• the positions of the candidate’s terms,

• an annotation indicating the candidate’s type (see section 3.3.2 for more details),

• the position of the 30-token context in the original file,

• the syntactic dependency of each word in the whole context,

• every word as is in the whole context,

• and the lemma of each word in the context.

Even if everything does not seem to be of use right now, it will be necessary for subse-

quent steps.

Once we have our full list of chiasmi candidates, we would like to annotate them; but

first, since the number of candidates is generally much too substantial for a human

annotator to handle manually, we have to pre-filter them. To that end, we feed our can-

didates file to the second script (Chiasmi candidates rating), which will assign a rating

to each candidate based on a pre-trained predictive model. By doing so, it will update

the candidates file by adding another entry to each JSON line: its candidate’s rating.

The script will also generate another JSON Lines file (Top candidates) containing the

best-rated candidates, up to a number that we can specify.

Once we have our file ready to be annotated, we may launch our annotation tool (Manual

annotation (Doccano)) and feed it our filtered file. A glimpse at the resulting graphical

user interface (GUI) used for the annotation can be found in the figure C.1 (Appendix

C.1). Once annotation is finished, Doccano (Nakayama et al., 2018 [Nak+18]) will give

back the same file as it was given as input with the annotation entry updated for each

candidate.

Last, but not least, the third script (Annotation formatting) will take three files as input

and perform two actions. First, it will use the candidates file and merge the annotated

file into it, so that the final candidates file will contain all relevant information (rating

and annotation). Second, it will use the original raw text and the candidates file to

produce a final readable output (Annotated text) as an XML file. Its format is a variant

of the specification by Harris et al. (2018) [Har+18]. An extract of such a generated

file containing an instance of an antimetabole can be found in the figure C.2 (Appendix
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C.1).

Eventually, the final outputs of this extraction pipeline are:

• the candidates file containing all relevant information for the subsequent detection

part,

• and an XML file readable by a human containing all annotated chiasmi in the

original text.

3.2.2 Choices

During this project, we made a lot of implementation choices - for instance, the defini-

tions of a chiasmus and of an antimetabole presented in section 2.1, or the tool Stanza

presented in Section 2.2.3. Let us review and explain the most important ones.

First of all, concerning the chiasmi and antimetabole definitions, we chose a looser one

compared to previous research, as we decided to try and extract candidates with more

than two pairs of terms. This choice was motivated by the fact that several definitions

found during our research and prototypical examples of chiasmi pointed in that direc-

tion. As it can only allow us to detect more candidates, it was an attempt at improving

the state of the art.

Out of the two latest approaches for extracting antimetabole and chiasmi, we chose to

only keep Dubremetz and Nivre’s (for antimetabole) but not Schneider et al.’s (for chi-

asmi). The former choice is motivated by the facts that we could not find any satisfying

alternative than searching for inverse repetitions of lemmas to detect antimetabole, and

that the present solution had been thoroughly researched and tested. On another hand,

the latter choice was motivated by our finding conceptual flaws in the approach of search-

ing for inverse repetitions of Part-of-Speech tags to extract chiasmi. Indeed, it does not

make any practical sense with regard to our definition of a chiasmus, and through proper

testing, we confirmed that it disregarded many prototypical antimetabole and chiasmi

instances:

(Noun) (V erb)

Never let a fool kiss you

or a kiss fool you.

(Noun) (V erb)
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(Noun) (V erb)

My heart burned with anguish,

and chilled was my body when I heard of his death.

(Adj) (Noun)

As we can see, both these examples do not present an inverse repetition of PoS tags.

Since this intrinsically flawed approach discarded numerous instances of salient chiasmi,

we decided to discard the approach. Instead, we experimented what seemed like a more

logical approach with regard to our definition: we tried to extract candidates based on

the semantic relations of their terms (either synonymous or antonymous), in a similar

fashion as Dubremetz (2013) [Dub13].

Concerning the size limit of a chiasmus candidate, we chose to follow the example of

past research and set it to 30 tokens.

Furthermore, in the light of Dubremetz and Nivre’s work, we decided to use stopwords

not as a detection feature but as an extraction filter, since their feature did not allow

them to detect any antimetabole with a stopword anyway. Doing that, we also removed

some stopwords from Dubremetz and Nivre’s list to prevent our tool from missing a lot

of salient chiasmi. Our motivation for this choice was to greatly reduce the number of

uninteresting candidates, thus rendering annotation easier. However, this parameter can

just as easily be removed.

Eventually, we chose to use Harris et al.’s (2018) [Har+18] scheme for producing a

readable annotated output for the simple reasons that it was already thought through

and thought out for supporting multiple types of rhetorical figures. By doing so, we

hoped to make our work easier to improve and expand. Our only addition to this

scheme is the introduction of an incremental numerical identifier for the instances of a

same rhetorical figure throughout a document, e.g.:

<antimetabole-0>[...]</antimetabole-0>

[...]

<antimetabole-1>[...]</antimetabole-1>

[...]

<antimetabole-20>[...]</antimetabole-20>
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3.2.3 Chronological Overview of the Implementation

When we first began to implement our extraction algorithm, we had no other choice

than to start from scratch. What we considered as the state-of-the-art, i.e. Schneider

et al.’s implementation, was not available to us, even after a direct contact with the

main author. Dubremetz and Nivre’s code, on another hand, was available2 along with

a sample of their data. However, the code had not been updated since 2017, was written

in Python 2, and we eventually estimated that it would have taken us more time to

rework it than to write our own solution, so we went with the latter.

Our first steps were to learn how to use Stanza, which was luckily quite straightforward,

and to implement our sliding window to iterate over the text. We wanted to start as

simple as possible, and gradually upgrade our tool with additional features up to the

final result presented in section 3.2.1. With that in mind, we decided to begin with

extracting only antimetabole, and then to reuse the algorithm and adapt it for chiasmi.

We thus began by coding the initialisation of our sliding window algorithm, in order to

provide it with its 30 tokens. This first step was simpler than the main algorithm in

the sense that it did not have to manage the window’s rear, and allowed us to debug

efficiently. This step is depicted in Algorithm 1. The sliding window came soon after,

and essentially consists of the same algorithm - with the difference that lemmas are

removed from all tables when they reach the end of the window.

In order to make our extraction pipeline compatible with the annotation tool Doccano,

we then had to work on the output of our algorithm to match the input format of

Doccano’s. We settled for the .jsonl format because it is language-independent, highly

common and well suited for our needs. As Doccano is an open-source tool, some features

are not quite perfect yet: for instance, we had the surprise to be forced to name our

JSON keys for the candidates annotation labels “cats”. And even if it did not require

any implementation from our part, learning how to use Doccano and setting up our own

annotation project was still a requirement for the pipeline. Luckily, the documentation3

was straightforward and very helpful for that matter.

Once the pipeline was more or less functional up to the annotation part, we needed a

means to visualize the resulting data and to be able to share our annotated data easily,

based on a common format. Having read Harris et al. (2018), we rapidly decided to use

their XML annotation scheme for these purposes, and developed the third script that

2Available at https://github.com/mardub1635/chiasmusDetector, visited on 07/12/2022.
3Available at https://doccano.github.io/doccano/, visited on 07/12/2022.
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Algorithm 1 candidates extraction initialisation(file f)

hash table lemma table;
hash table match table;
list candidates;
integer num tokens← 0;

while not end-of-file of f and num tokens ̸= 30 do
read the next word w from f ;
get lemma from w;
if not is punctuation or stopword(w) then

is a match, current pairs← search lemma in window(lemma, lemma table);
if is a match then ▷ We found new pairs of matching lemmas

old matches← search old matches(match table, current pairs); ▷ We
search for old pairs of matching lemmas inside the new pairs

candidates← update candidates(current pairs, old matches, candidates);
append current pairs to match table;

end if
append lemma to lemma table
num tokens← num tokens + 1

end if
end while

return candidates

allowed us to automatically produce such readable XML files directly from our anno-

tated data.

Now that we were close to having a stable version of our antimetabole extraction tool,

we tried to refactor and clean the code as much as we could, as well as fixing all bugs

and abnormal behaviours we could find (such as candidates ending up as duplicates

after extraction). Only then did we implement the last two main features of our tool:

the extraction of chiasmi through embedding and the extraction of what we call nested

antimetabole and chiasmi (see section 2.1.2).

Our algorithm for the extraction of chiasmi through embedding is not very different from

our algorithm for antimetabole: instead of storing and comparing lemmas, we store em-

bedding vectors provided by GloVe (Pennington et al., 2014 [PSM14]) and compare them

with the cosine similarity function provided by PyTorch (Paszke et al., 2019 [Pas+19]).

Two embedding vectors (representing two words) are considered to be a match if their

cosine similarity is above or below an empirically defined threshold. The newly found

candidates are then treated the same way as the antimetabole candidates, all the way
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to the extraction output.

Eventually, the extraction of nested chiasmi candidates is made possible quite easily

thanks to the construction of our main extraction algorithm. In the algorithm 1, when

a new pair of matching lemmas is found, the function to search for nested chiasmi (algo-

rithm 2) is called and the possibly found nested chiasmi are appended to the candidates

list.

Algorithm 2 nested candidates search(word first term, word second term, list
candidates list)

list nested candidates;

for candidate in candidates list do
if start position(candidate) > position(first term) and end position(candidate)

< position(second term) then
append candidate to nested candidates

end if
end for

return nested candidates

Afterwards, we received an update from the main author of Schneider et al. (2021)

[Sch+21] with a link to a fresh public GitHub repository containing their code4. After

some mandatory fixes and cleaning, we were able to adapt their implementation of a

detection model to English, used to rate the extracted candidates. However, we also

had to revise our extraction algorithm so that it could provide the detection model with

additional data, required for its different features. That way, we were eventually able to

retrieve the top candidates from our extracted list, which made annotation easier, even

with a quite poor performance from the model (as the required training data was not

provided).

Eventually, the last step was to enable our pre-filtered annotated candidates to be merged

back with their non-filtered peers, to have a complete file containing all annotated candi-

dates. Following past research (see Section 2.2), we may consider all candidates outside

of our filtered pool to be rhetorically not salient. However, this practice implies to adapt

the size of said pool to the size of the dataset that we want to annotate.

4Available at https://github.com/cvjena/chiasmus-detector, visited on 07/12/2022.
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3.2.4 Limitations

In this section, we will discuss the limitations of our chiasmi (or rather antimetabole,

since, as we will see just now, the chiasmi extracting part did not work out) candidates

extraction pipeline, whether they result from our implementation or from external fac-

tors.

First of all, the automatic extraction of chiasmi through semantic relationships, with

the help of word embeddings, did not provide satisfactory results. It is difficult to say

if today’s embedding tools are not mature enough yet to permit such uses, or if we

should, like Schneider et al. (2021), accept having a disproportionate number of chiasmi

candidates compared to the state-of-the-art. Nevertheless, we were not able to find a

compromise between a threshold low enough to allow us to detect semantically related

terms of chiasmi while still high enough (or the reverse for antonyms) for it to avoid

matching completely unrelated words. Therefore, our extraction tool did not succeed in

extracting chiasmi, and our work eventually shifted its entire focus to antimetabole.

Secondly, our pre-processing tool Stanza also had a role to play in our extraction tool’s

efficiency. Indeed, as the latter relies on the words’ lemmas to find matches, it is natu-

rally limited by the lemmatizer’s efficiency, for which further insights will be given in the

Chapter 4. As explained earlier, we also chose to use stopwords as a “hard filter” during

extraction rather than as a detection feature, unlike Dubremetz and Nivre (2017). While

this leads our tool to give much fewer uninteresting candidates, which makes annotation

much easier, it also makes us miss salient antimetabole candidates (again, see chapter 4

for more insights). However, this limitation is mitigated by the fact that the stopwords

filter can easily be removed if necessary.

The last two major limitations of this work actually concern the data annotation. The

first one is inherited from past research and from the idea to use information retrieval

methods. As explained, only the top candidates given by the detection algorithms

are used to evaluate the predictive models, as well as for annotation. However, this

may induce overfitting in the predictive models while potentially leaving out salient an-

timetabole annotated as the contrary if they do not appear in the top.

Lastly, introducing nested antimetabole in our extraction pipeline raises the same issue

as for binary antimetabole: how can we establish which nested antimetabole candidates

should actually be considered as nested, or as the stacking of an antimetabole and a

mesodiplosis? Obviously, one could argue that all nested antimetabole are nested an-

timetabole. However, if we consider our candidates only for their rhetorical salience, the
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dilemma remains far from trivial.

3.3 Data

3.3.1 Retrieval

Considering the very limited size of the available data to this day (31 annotated salient

antimetabole from Dubremetz and Nivre and none from the others), we decided to try

a completely different approach from the previous research and expand our dataset.

Instead of analysing huge pieces of text chosen intuitively but without any guarantee

of containing a decent number of antimetabole, which would take a serious amount of

time to annotate while presenting the risk to end up with “another The River War” (a

long book from Winston Churchill containing only one salient antimetabole, see Section

2.2.2).

Therefore, we decided to adopt a different strategy. If chiasmi and antimetabole were so

rare, we might as well go straight for the light rather than keep searching in the dark.

And that is why we ended up roaming the vast Internet to find as much salient instances

of chiasmi and antimetabole as we could find. At the same time, thanks to one of our

supervisors (Diana Nurbakova), we discovered the book “Never Let a Fool Kiss You or

a Kiss Fool You” by Dr. Mardy Grothe [Gro02], a truly great source for chiasmi and

antimetabole. The examples from it were manually extracted by her and added to our

dataset.

In total, the book gave us around 543 instances of chiasmi and antimetabole, while our

additional search for additional sources gave 243 more instances, which all amount to

788 examples. Our additional sources are very diverse, and although most of them are

websites, some examples also come from books, songs, movies, series, or even real-life

discussions.

However, such a diversity of sources and examples inevitably lead to the presence of

duplicates in our dataset. An algorithm-based cleaning work allowed us to take care of

the most obvious duplicates, but some could have been trickier to find, or even unclear

as to whether they really are duplicates.

Eventually, in order to add more uninteresting instances and to attempt to avoid biases

in our heavily imbalanced dataset, my project partner had the idea to take a random

sample of the Corpus of Contemporary American English (COCA) dataset (Davies, 2008
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[Dav08]). This way, around 12000 new instances, automatically annotated as negative,

were added to the dataset.

3.3.2 Annotation

The annotation of our dataset was made easier, even if not less tedious, by the fact that

we did not really have to think about whether an instance extracted by our pipeline

actually was a salient instance or not, since our dataset was already fully comprised of

salient instances. However, we still had to pass our dataset into the pipeline in order to

be able to use Doccano and to have all the data our models would subsequently need.

As hinted in the previous section, the only problem we still had to resolve was about the

nested chiasmi and antimetabole: how would we handle them along with their “binary”

equivalents (e.g. the ABBA and ACCA and BCCB in ABCCBA)5, and how would we

decide which of the chiasmus with more terms or with less terms is the more salient

one?

First of all, since we are not interested in chiasmi anymore (see Section 3.2.4), our

categories for annotation only needed to take antimetabole into account. Thus the

following categories were used:

• Antimetabole

• Nested antimetabole

• Duplicate

• Not salient

The first two should be self-explanatory; as explained in Section 2, we do not agree with

the distinction between “true chiasmi” and “false chiasmi” in the past research. We

rather separate “rhetorically salient” chiasmi from “not salient” chiasmi, thus the last

category. The Duplicate category was inspired from Dubremetz and Nivre (2015, 2016,

2017) but remains different from theirs. We use it to answer the questions formulated in

the previous paragraph, i.e. to handle nested antimetabole: when a nested antimetabole

is annotated as such, the corresponding binary antimetabole is marked as a Duplicate

5A passionate reader could be tempted to calculate how many “sub-chiasmi”, or “chiasmi of lesser
order”, are covered by a chiasmus with n pairs of terms. The answer we found ourselves is the
following (subtract 1 to avoid counting the chiasmus with n terms):

∑n−2
k=0 [(n− k) ∗ (n− k − 1)/2].

For n = 2, 3, 4, 5, it respectively gives 1, 4, 10, 20 chiasmi.
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- only the most exterior one is considered and all other are discarded. This choice is

motivated by the idea that in an ABCCBA or even ABCDDCBA pattern, the most in-

teresting binary antimetabole is the ABBA one, since the C and eventual D pairs remain

inside its boundaries, and often (if not always) act as a mesodiplosis.

However, as hinted previously, we do not consider all nested antimetabole as salient - or,

at least, more salient than their binary counterparts. We left this choice to the annota-

tor’s discretion, though with two simple rules to help us. First, any nested antimetabole

that would be too hard to annotate has to be considered as less salient, for simplicity’s

sake. Let us take a clear example:

(A) (B)

Love as if you would one day hate , and

hate as if you would one day love .

(B′) (A′)

As we can see, the binary antimetabole is very easy to spot (ABB’A’). On the contrary,

the perfect mesodiplosis is comprised of six words, from whose it is impossible to choose

which is the correct one to form a nested antimetabole. In these cases, we thus mark

the nested ones as Not Salient and the exterior binary one as Antimetabole.

Second, we chose to disregard nested antimetabole with very common mesodiplosis,

and especially whose central term is a stopword (such as “without”, which is extremely

frequent).

3.4 Detection of Antimetabole’s Saliency

Once that we managed to get a sturdy antimetabole extraction pipeline with a fully

annotated dataset, we could finally get to the last part: actually detecting our salient

antimetabole.

3.4.1 Baselines

For this experiment, we will use the current state-of-the-art as our baselines. Therefore,

our two baselines will be:
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1. Dubremetz and Nivre (2017), with a logistic regression model and all features

described in Section 2.2.2.

2. Schneider et al. (2021), with a logistic regression model and all features described

in Section 2.2.2.

Since Schneider et al.’s algorithm uses Dubremetz and Nivre (2017) as a baseline itself,

we could have have limited ourselves to one baseline. However, since both approaches

remain different on several crucial aspects (e.g. detection on antimetabole against chi-

asmi, made for English against German), we still deem it relevant and interesting to

compare both on a larger dataset.

The implementation for both models was helped by Schneider et al.’s implementation,

but still had to be reworked to match our data specifications, along with minor fixes.

Moreover, all features from Dubremetz and Nivre and Schneider et al. were reworked

a second time to adapt to the detection of nested antimetabole. For their binary an-

timetabole models, the instances considered as true will be annotated with Antimetabole

or Duplicate, as specified in Section 3.3.2.

3.4.2 Models

Several models will be compared against the baselines. First of all, two modest attempts

at directly improving the state-of-the-art, which we will call improved Dubremetz and

improved Schneider, will be tried against their original implementations (respectively

Dubremetz and Schneider).

Secondly, like Dubremetz and Nivre (2017) did to some extent, we will implement dif-

ferent types of models with the same features to compare their performances and the

results of their training. The four different models were chosen for their interpretability

and are:

• A classic logistic regression classifier, to be directly compared with past research;

• A Support-Vector Machine (SVM) with a Radial Basis Function (RBF) kernel (like

Dubremetz and Nivre, 2017);

• A regression tree;

• A random forest.
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The two first models are thus inspired from the state of the art, while the two others

are an additional experiment. Even though the random forest is expected to perform

better than the “simpler” regression tree, the latter is still included for its interesting

interpretative properties.

All models are implemented using scikit-learn (Pedregosa et al., 2011 [Ped+11]).

3.4.3 Features

In order to make our models competitive against the baselines, we introduce four new

features in addition to those of the state-of-the-art. The first two were inspired by Harris

and Di Marco (2017) [HD17]:

20. [T]ous pour un, un pour tous. ([Dum49]:129)

All for one, one for all. ([Dum10]:80)

[...] Example 20, in particular, features not just the central member of the

chiastic suite, antimetabole, but also isocolon (prosodic repetition), parison

(syntactic-structure repetition) and mesodiplosis (as above, medial lexical

repetition). [...]

Figures of parallelism, in particular, like isocolon and parison, seem to have

a special role in augmenting other figures [Fah03] [...]

Hence the two following features:

1. Detection of a parison stacking with the antimetabole (with Part-of-Speech tags).

2. Detection of an isocolon stacking with the antimetabole (with the prosodic Python

library).

In order to shed lights over these two mysterious new rhetorical figures, Harris and Di

Marco (2017) give us the following definition:

Parison: A scheme of syntactic repetition, often referred to as syntactic

parallelism: the proximal repetition of the same syntactic pattern. (“My life

is spent alone, without wealth, without status, without love, and without

hope” ([Cix06]: p. 354.)

45



3 Methods

For isocolon, though, we will have once again to call Greene (2012, p.734) [Gre+12] for

help with his double entry about isocolon and parison:

ISOCOLON AND PARISON. Parison (Gr., “almost equal”) describes syn-

tactic members (phrases, clauses, sentences or lines of verse) showing paral-

lelism of structure. In short, they are identical in grammar or form. Isocolon

(Gr., “equal length”) denotes members that are identical in number of syl-

lables or in scansion. [...]

Isocolon is particularly of interest because Aristotle mentions it in the

Rhetoric as the figure that produces symmetry and balance in speech and,

thus, creates rhythmical prose or even measures in verse; cf. Quintilian

9.3.76.

He gives the following example for isocolon:

“Was ever woman in this humour woo’d? / Was ever woman in this humour

won?” (Richard III 1.2.227).

The last two novel features are partially inspired from already existing ones, and from

experimental observations made during the retrieval of our dataset:

3. Detection of nominal groups attached to the antimetabole terms (terms underlined,

nominal group in bold):

“Some have an idea that the reason we in this country discard things so readily

is because we have so much. The facts are exactly opposite – the reason we

have so much is simply because we discard things so readily.”

In fact, one could argue that this feature only captures the simplification made

during the extraction of antimetabole, which reduces the antimetabole’s terms to

only one word.

4. Detection of repetitions before or after the antimetabole (terms underlined, rep-

etition in bold):

“My job is not to represent Washington to you, but to represent you to Wash-

ington.”

“Being deeply loved by someone gives you strength, while loving someone deeply

gives you courage.”
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4.1 Extraction Pipeline Evaluation

Unfortunately, we cannot directly compare our antimetabole extraction pipeline to the-

state-of-the-art. Indeed, the method of Schneider et al. (2021) [Sch+21] is much too

different, and Dubremetz and Nivre’s (2017) [DN17] implementation, as explained pre-

viously, is not easily available for comparison. In a sense, our extraction pipeline is the

first one to be fully implemented, working and specialized for antimetabole.

However, we can still evaluate its performances on our dataset and understand its limi-

tations to facilitate further improvements left for future work.

As can be seen in the Table 4.1, our dataset is comprised of 680 antimetabole in total

(a very attentive reader may have noticed the discrepancy with the total number of 788

chiasmi announced in the chapter 3 - this is due to one instance in Latin that was left

out, being impossible to classify). The 107 chiasmi instances, whether they could have

been possible or not to extract with our embedding method (implied and wordplay fall

into the latter category), do not interest us.

As can be seen in the Table 4.2, the recall of our extraction pipeline is estimated to 86%.

That being said, we also mentioned that the stopwords filter can easily be switched

off if necessary, bringing the recall up to 90%. One small improvement could be the

expansion of the window size, fixed to 30 tokens as per previous research, which could

Table 4.1: Composition of the dataset

Antimetabole Implied chiasmi or
wordplay

Chiasmi Total

680 50 57 787
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Table 4.2: Results of the extraction pipeline for antimetabole

Extracted
Unextracted

Lemmas Stopwords Window
size

585 60 24 11

86% 8.8% 3.5% 1.6%

add another 1% to our recall, but the main hurdle remains the lemmatizer. Because of

its performances, we lose almost 9% of our antimetabole.

4.2 Models Evaluation and Comparison

4.2.1 General Presentation

In order to make things clearer as well as simpler, we have to make a few considerations

before diving into this section. First of all, we will only focus on the most popular

type of model in previous research, so that direct comparisons with the baselines will be

possible. Thus, all of our models will be logistic regression classifiers. Implemented with

scikit-learn (see chapter 3), we chose the L2 penalty term for training because of the

relatively small number of our features, leading us to not need the L1 penalty for feature

selection with many zero coefficients. Moreover, we chose the liblinear optimisation

algorithm because it is supposed to be ideal for small datasets.

In order to evaluate our models, we have them score all of our candidates in the test

sets, and follow previous research by computing the average precision of the ranked set.

Because of our small dataset and the will to prevent overfitting as well as getting more

reliable results, we chose to train and test the models with 5-fold cross-validation, just

like Schneider et al. (2021). Following the previous section, we then have 472 positive

instances for training, and 118 positive instances in each testing set.

Where Dubremetz and Nivre (2017) had less than 50 positive instances to evaluate their

models on, and chose to compute their average precision on the first 200 candidates

according to their ranking scores, we logically chose to expand that range due to our

greater number of positive instances. The experimental number of a top 400 was chosen

accordingly. The average precision is thus computed as the average of the 5 average
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precisions, computed for each fold. To calculate the recall, we simply look at how much

of the 118 positive instances were indeed found in this top 400. Due to the nature of

our task, these two metrics will solely be used throughout this chapter.

4.2.2 Baselines

We can expect from the Chapter 2 to have at least two baselines (from Dubremetz and

Nivre (2017) and Schneider et al. (2021)). However, the situation is even a bit more

complicated than that, since these two baselines were tampered with and improved.

Hence the following distinction:

• Dubremetz and Schneider will be the simple, raw baselines;

• Dubremetz nested and Schneider nested will be the baselines whose features were

adapted to take better advantage of the additional information given by the nested

antimetabole;

• Improved Dubremetz and Improved Schneider are straight improvements of the

baselines, following ideas of our own to gain possibly better results without chang-

ing anything fundamental.

The results of this first experiment are reported in the Table 4.3. Following the results

from Schneider et al. (2021) concerning antimetabole, we expected both models to

perform on an even scale: even if Schneider only adds features to Dubremetz, these

features were found to be effective for chiasmi but not for antimetabole. Seeing how small

the differences are between Dubremetz and Schneider on our dataset, we may confirm

this result. However, we can also notice that the two improvements (taking the nested

antimetabole into account and our own improvements) indeed increase significantly the

average precision compared to the baselines. Nested Dubremetz clearly outperforms its

Table 4.3: Results of the baselines evaluation

Metric
Simple Nested Improved

Dub. Schn. Dub. Schn. Dub. Schn.

Ave. Precision 68.0% 69.0% 74.3% 72.3% 77.5% 77.5%

Recall 96.3% 96.4% 94.9% 96.4% 94.6% 95.4%
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baseline by 6%, although its recall decreases, while Nested Schneider keeps a stable

recall but increases its average precision by 3%. The Improved versions, on another

hand, both decrease their recall but improve greatly the average precision (+9.5% and

+8.5%), ending with exactly similar results.

In an additional experiment, we tried to combine both Improved versions, since the

Schneider models are based on the Dubremetz baseline. Thus, combining the Improved

Dubremetz with the Improved Schneider gave an average precision of 77.5% and a recall

of 94.7%. In fact, these results match perfectly Improved Dubremetz.

In conclusion, what we can consider the best version of the baselines is Improved Dubremetz,

since it achieves the same performances as when augmented with Schneider features,

but with a simpler model.

4.2.3 Novel Features

In order to test the four new features presented in Section 3.4.3, we first conducted

an experiment by adding each feature to the baseline to see what effect it had on the

results. The results of this experiment can be found in the Table 4.4. At first glance,

the recall seems to be very stable and close to the baseline (between 95.9% and 96.4%)

for features based on Dubremetz, and the average precision only significantly increases

when the parison feature is added - and by 7%. Isocolon and repetitions do not seem

to benefit the model at all, but do not damage its performances either; nominal groups,

on another hand, do make the average precision go up by 1%. However, when we add

our features to Improved Dubremetz, whose average precision was already 9% higher

than Dubremetz, the increase is greatly mitigated: from 7% to 0.6% for parison, and

comparable results for the three other features. Concerning recall, it is systematically

Table 4.4: Results of the standalone features evaluation

Metric
+ Parison + Isocolon + Nominal gr. + Repetitions

Dub. Impr.
Dub.

Dub. Impr.
Dub.

Dub. Impr.
Dub.

Dub. Impr.
Dub.

Ave.
Precision

75.1% 78.1% 68.0% 77.6% 69.1% 78.0% 68.2% 77.7%

Recall 95.9% 95.4% 96.3% 94.7% 95.9% 94.2% 96.4% 94.4%
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Table 4.5: Results of the features gradation evaluation

Metric
+ Parison + Isocolon + Nominal gr. + Repetitions

Dub. Impr.
Dub.

Dub. Impr.
Dub.

Dub. Impr.
Dub.

Dub. Impr.
Dub.

Ave.
Precision

75.1% 78.1% 75.3% 78.5% 75.7% 78.5% 76.5% 79.1%

Recall 95.9% 95.4% 95.9% 95.4% 95.9% 95.8% 95.9% 95.8%

lower (between 1.5 and 2%) when we combine our new features with Improved Dubremetz

than with Dubremetz, suggesting a trade-off for the improved average precision.

By doing the same experiment with Schneider as a baseline rather than Dubremetz, we

found comparable increases in average precision, with a slight increase in recall.

To confirm these results, we also conducted a gradation experiment, by adding one fea-

ture after the other and stacking them, instead of adding them only one by one on their

own. The results of this experiment are shown in the Table 4.5. Interestingly, we do

not get the exact same results as in the previous experiment. Concerning Dubremetz,

although adding the parison feature still improves the average precision by 7.1%, adding

the isocolon on top of it gives 0.2% more: even if it is very small, it is still better than

having no effect at all. The nominal groups, however, now only add 0.4%, but the rep-

etitions add yet another 0.8%, compared to the 0.2% in the standalone experiment. It

is also worth noting that even with all these new features, improving their baseline by

8.5%, the baseline Improved Dubremetz still outperforms it by 1% (even though we still

gain 1.3% in recall).

The gradation based on Improved Dubremetz yield comparable results, although the

nominal groups now do not improve the average precision at all. On another hand, the

isocolon and the repetitions bring similar improvements, for a total of +1.6%, since the

parison only improved it by 0.6%.

Adding features does not worsen the recall, although it does not improve it greatly either

(not at all for the Dubremetz -based features and by 0.4% for the Improved Dubremetz -

based ones).

Once again, we conducted the same experiment with features whose baselines are Schnei-

der and Improved Schneider. Compared to the gradation for Dubremetz, the one for

Schneider still yields comparable results, although with a smaller improvement with

the parison features and slightly better improvements for the other three, for a final
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Table 4.6: Results of the features ablation experiment

Metric
- Parison - Isocolon - Nominal gr. - Repetitions

Dub. Impr.
Dub.

Dub. Impr.
Dub.

Dub. Impr.
Dub.

Dub. Impr.
Dub.

Ave.
Precision

-7.2% -0.7% -0.2% -0.0% -0.2% +0.1% -0.7% -0.6%

Recall +0.5% -1% +0.2% -0.5% -0.3% -0.5% -0.0% -0.0%

average precision of 77.8% (+8.8% compared to the baseline) with all features. The

experiment for Improved Schneider gives almost the exact same results as for Improved

Dubremetz, with a final average precision of 79.3% (+1.8% compared to the baseline)

with all features. Finally, combining Improved Schneider with a base consisting of Im-

proved Dubremetz does not improve it at all.

Last but not least, we finally conducted an ablation experiment on the models combining

all new features, to see which ones improved the most the whole model. The results of

this experiment are shown in the Table 4.6, and are really not surprising. We confirm

that the parison feature has the most impact on the average precision, and that the

isocolon has very little of no impact at all. The repetitions features seem to perform

better when combined with the others, contrarily to the nominal groups, which even

worsen a tiny bit the performances of the whole model based on Improved Dubremetz.

On another hand, the variations in the recall measures seem to be consistent with the

standalone features experiment for both approaches.

Compared to the ablation experiment for features combined with Schneider and Im-

proved Schneider, the former seems to give more importance to the nominal groups

features compared to Dubremetz, and the latter gives more importance to all features

compared to Improved Dubremetz.

4.2.4 Different Types of Models

Now that we gained a lot of insights on our baselines and features thanks to the logistic

regression classifiers, we can try different types of models and compare them to see

which one performs best. To that end, we will evaluate four types of models with

several experiments:
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Table 4.7: Results of the baselines evaluation for different model types

Model type Metric Simple
Dub.

Nested
Dub.

Improved
Dub.

Log.
Reg.

Ave. Precision 68.0% 74.3% 77.5%

Recall 96.3% 94.9% 94.6%

SVM
RBF

Ave. Precision 65.4% 68.8% 77.0%

Recall 92.9% 89.8% 92.9%

Reg.
Tree

Ave. Precision 66.8% 89.4% 65.0%

Recall 21.4% 12.4% 8.8%

Random
Forest

Ave. Precision 60.9% 71.7% 67.5%

Recall 77.8% 75.2% 81.9%

• A logistic regression classifier (log. reg.);

• A Support Vector Machine with a RBF kernel (SVM RBF);

• A regression tree (reg. tree);

• A random forest (rand. forest).

First of all, let us compare our baselines with the Table 4.7. The first obvious result

is that the logistic regression model seems to outperform all others on both recall and

average precision, by a small margin for the SVM and by a much larger one for the

regression tree, as well as the random forest. Another outstanding result is the poor

performance of the regression tree, even if it achieves an average precision of 89.4% for

Nested Dubremetz : with a recall of only 12.4%, the average precision does actually not

mean much, if anything at all. The random forest achieves a much better recall than the

regression tree, and also satisfying average precisions, but both still cannot compare to

the logistic regressor and the SVM: even with a recall lower by 15% to 20%, its average

precision remains much lower for Dubremetz and Improved Dubremetz. Just like the

regression tree, it seemingly outperforms the SVM for Nested Dubremetz (though still

not the logistic regressor) in terms of average precision, but once again, its recall lower

by 15 points does not allow us to jump to any conclusion.

It is also worth noting that for the three main models (excluding the regression tree),

the performance gap is narrowing for Improved Dubremetz : the SVM has an average

precision only 0.5% lower than the logistic regressor and a recall only 1.7% behind, for
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Table 4.8: Results of the standalone features evaluation for different model types

Model
type

Metric + Pari-
son

+ Iso-
colon

+ Nomi-
nal gr.

+ Repeti-
tions

Log.
Reg.

Ave. Precision 75.1% 68.0% 69.1% 68.2%

Recall 95.9% 96.3% 95.9% 96.4%

SVM
RBF

Ave. Precision 78.0% 64.1% 66.5% 63.3%

Recall 90.8% 92.4% 92.7% 91.7%

Reg.
Tree

Ave. Precision 74.7% 68.1% 71.2% 71.7%

Recall 41.9% 15.3% 24.1% 9.7%

Random
Forest

Ave. Precision 72.5% 60.5% 63.7% 60.7%

Recall 80.7% 76.1% 72.0% 70.5%

a gap of 5.5% and 5.1% respectively when it comes to Nested Dubremetz. The random

forest, on another hand, remains 10 points lower for its average precision, but “only”

11 to 13 points behind the two first models in terms of recall. At the same time, the

regression tree performs worst with Improved Dubremetz, with a recall and an average

precision lower than ever (to get an idea, its recall of 8.8% means that it scored only 10

salient instances out of 118 in its top 400).

For the sake of simplicity, since we now have four different models to evaluate, the

standalone features experiment will only be conducted on the basis of Dubremetz, for

which the novel features had most impact with the logistic regression classifier. We thus

hope to be able to see a similarly great impact on the performances of the other models

if we choose a weaker baseline (as compared to Improved Dubremetz ), which should be

more interesting to analyse. The results of this new experiment are reported in the Table

4.8.

First of all (since we already presented the logistic regression model in the Section 4.2.3),

let us be impressed by the improvement induced by the introduction of the parison

feature. Admittedly, we expected it to work well since it was the most effective one for

the logistic regression, but its effects are even more impressive with the SVM, with an

increase of 12.6% in average precision. However, this result may be slightly mitigated

by the associated decrease of 2.1% in recall. Furthermore, it truly works wonders for

the regression tree and random forest. The poor regression tree with its ridiculous recall

now sees it jump to 41.9%, almost doubling it with just one additional feature, while

increasing its average precision by 7.9% ! Eventually, the random forest also presents a
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stunning increase in average precision (+11.6%), but contrarily to the SVM, its recall

also increases by 2.9%. So far, this new feature undoubtedly seems to perform much

better than the other three ones, but let us hear what these have to say.

The isocolon that was already a poor student in our preliminary study with the logistic

regressor, since its addition did not improve the model’s performances one bit; however,

for our new models, the isocolon... is even worse. Unsatisfied with doing nothing for the

logistic regression, it now damages the SVM’s performances by decreasing its average

precision (by 1.3%) and its recall (by 0.5%). For the regression tree, which already had

a very low recall, it further lowers it by one quarter, which tempers its slight increase in

average precision. The random forest suffers the same fate as the SVM and sees both its

average precision and recall decrease (by 0.4% and 1.7% respectively). Therefore, where

the parison was already hinted to be the most promising feature, the isocolon was hinted

to be the worst... and still does nothing to convince us otherwise. However, the isocolon

does not stand alone in the corner of shame. Not unlike it, the repetitions feature did

not improve the logistic regression performances when added alone; and for the other

three models, its effect is the exact same as the isocolon (understand: just as bad), if

not even worse.

Hopefully, our last “nominal groups” feature will perform better than its two neighbours,

as can be expected from the slight improvement it gave the logistic regressor. True to

its promises, it indeed improves our SVM’s average precision, if only by 1.1%, while the

recall practically does not vary (-0.2%). The effect is more visible on the regression tree,

whose average precision rises by almost 5 points, while its recall also increases, but only

by 2.7% (and thus remains... awful). The random forest finally shows modest results,

as the improvement in average precision (+2.8%) is once again mitigated by its recall

deterioration (-5.8%).

Eventually, even if the parison seems much more useful than the other features, all hope

is not lost: even if a feature performs poorly on its own, it can always improve a model

when combined with others. To confirm this, we thus run a final feature ablation study,

whose results are reported in the Table 4.9.

Without any surprise, this experiment proves (if it was still needed at this point) that

the parison feature has the most positive impact, whatever the model and the features

already used. Although it worsens the logistic regressor’s recall by 0.5%, it improves the

same model’s average precision by 7.2% and simply improves everything for all other

models. It is most notable for the regression tree, for which it improves the average

precision by 13.7% as well as the recall by 29.2% !
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Table 4.9: Results of the features ablation study for different model types

Model
type

Metric All fea-
tures

- Pari-
son

- Iso-
colon

- Nominal
gr.

- Repeti-
tions

Log.
Reg.

Ave. Precision 76.5% -7.2% -0.2% -0.2% -0.7%

Recall 95.9% +0.5% +0.2% -0.3% -0.0%

SVM
RBF

Ave. Precision 75.9% -12.8% +0.9% -0.0% +1.3%

Recall 92.9% -0.2% -1.4% -0.9% -1.0%

Reg.
Tree

Ave. Precision 78.8% -13.7% -0.3% -5.3% -5.5%

Recall 41.4% -29.2% +1.1% -7.7% -0.7%

Random
Forest

Ave. Precision 73.5% -11.4% +0.5% -0.3% -0.4%

Recall 79.2% -2.3% -1.4% -0.2% +1.6%

We also expected the nominal groups to perform correctly, which this study confirms:

it is the only feature that improves all models on both their metrics (maybe with the

exception of the SVM’s average precision, but an absence of degradation is still an im-

provement), even if by more modest margins.

Obviously, the results are a bit more complicated for the two resulting features (and

“bad students”): the isocolon and the repetitions. Indeed, the isocolon has the interest-

ing effect to improve each model’s average precision or recall only by undermining the

other. In that sense, it is difficult to say whether it has a positive, negative or neutral

impact; even measuring the difference between the positive and negative impact does

not help much, since this difference also varies from one model to another. At least,

the repetitions feature offers a somewhat clearer result: it has an undeniably positive

impact on the performances of the logistic regression classifier and of the regression tree,

but an evenhanded if not negative impact for the SVM and the random forest.

In conclusion, it would seem that the parison and the nominal groups features are very

effective, that the repetitions feature is to handle with care and maybe to fine-tune to

make it interesting, while the isocolon feature is an utter disappointment.
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5.1 Interpretation of the Baselines Results

5.1.1 The Dubremetz Baseline

In the Section 4.2.2, it was made plainly clear that the modified versions of the Dubremetz

baseline features, i.e. Nested Dubremetz and Improved Dubremetz, improved substan-

tially the model performances. Let us attempt at explaining these discrepancies.

First of all, the differences between Dubremetz and Nested Dubremetz are quite simple:

the latter is merely an adapted version of the former to take into account all specifici-

ties of antimetabole candidates annotated as Nested, where the original Dubremetz only

computes its feature values based on binary antimetabole, composed of the most exte-

rior terms of a nested antimetabole. Therefore, as the Nested version is obviously better

able to discriminate and rate the nested candidates, which add up to a bit more than

one quarter (27.5%) of the whole dataset, and a bit less than one quarter (22.5%) of the

candidates annotated as salient antimetabole. These numbers being far from negligible,

it is easily understandable that analysing the nested candidates more in detail allows for

a much better average precision.

On another hand, while the Improved Dubremetz was expected to perform better than its

simpler counterpart for similar reasons, it was less obvious to expect such improvements

with regard to the model’s performances. Indeed, even if the features are adapted to be

able to conduct a finer analysis, they are not computed with more data like the Nested

Dubremetz did: to allow for a fair comparison, this version was built upon Dubremetz

rather than Nested Dubremetz with only the exterior terms of the nested candidates

being kept. For starters, we improved the lists used for detecting conjunctions, negation

and punctuation in the candidates as follows:
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• The “conjunction list” was extended with five new conjunctions and adverbs: “al-

though”, “before”, “once”, “though” and “while”. This extension was not based

on any statistical study of the data, to avoid any bias, and was rather a con-

tinuation of the idea expressed by Dubremetz and Nivre (2015) [DN15] for their

first implementation of the feature, which was supposed to “underline the axial

symmetry” of the antimetabole.

• The “negation list” was extended with two new words: “neither” and “none”. We

simply considered that these two words expressed as much a negation as the ones

originally implemented by Dubremetz and that there was no reason to not add

them to the list.

• Inspired by the implementation of Schneider et al. (2021) [Sch+21], we extended

the “hard punctuation list” with six new signs: “ - ”, “ – ”, “ { ”, “ } ”, “ ’ ” and

“ ” ”. The thought process that lead to this improvement was similar to the one

for the negation list.

With this, the new model was supposed to only perform better, as the features were

plainly improved to integrate more possibilities than before. However, the following

modifications may be more subtle or subject to discussion, even though we also consider

them to be improvements:

• The “centralPunct” feature, which captured the “number of hard punctuation

marks and parentheses in Cbb” (Cbb designating the central part of the antimetabole

between the B term and the B’ term) as explained in Dubremetz and Nivre (2015),

was duplicated to capture not only the hard punctuation marks, but also the soft

punctuation marks. Indeed, the former was thought to be allow the model to dis-

criminate more easily “false positives” from salient antimetabole, as it was hypoth-

esized that hard punctuation marks should not (or rarely) appear in the middle

of an antimetabole. By joining this idea with the one behind the “conjunction

list” feature, we emitted the hypothesis that soft punctuation marks (i.e. com-

mas) could become an indicator of an interesting candidate by “underlining the

symmetry” just like a conjunction.

• We modified one of the “similarity” feature (exactMatch) to match it with two

other features of the same category (sameTok and simScore). Originally, the fea-

ture is “true if Cab and Cba are identical” (Cab and Cba being composed of the
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words between each of the antimetabole pairs of terms A-B and B’-A’ ), but said

identity is based on the exact words in the sentence. We switched it to lemmas,

with the idea to capture more examples while keeping the same fundamental idea,

which is in fact to detect a mesodiplosis stacking with our antimetabole.

• Eventually, we extended the “hasConj” feature beyond its list by adding two fea-

tures to capture the presence of conjunctions (even if the list is now more hetero-

geneous) not only in the central part of the antimetabole, but also in Cab and Cba.

While the former is trying to capture an axial symmetry, the latter rather tries to

capture an axial dissymmetry.

Even if we could do it, we will not conduct any further experiment to try to determine

which combination of these improvements and additions gives the best performances:

we are satisfied enough to confirm our intuition that the modifications as a whole indeed

improved the model’s performances, and trying to find the ideal combination, down

to which additions to the various lists actually improve the ratings and which do not,

would very probably end up with our model overfitting on our current dataset. Even if

we managed to substantially increase the size of our pool of antimetabole, the number

of salient instances remains objectively quite low for such a fine-grained optimisation.

5.1.2 The Schneider Baseline

From Schneider et al (2021), we expected the models based on the Schneider baseline

to perform as well as the Dubremetz ones, since their article showed no improvement

with regard to the detection of antimetabole. This result was somewhat confirmed by

the very small difference in performance with the addition of the Schneider features in

the section 4.2.2: 1% in average precision and 0.1% in recall. However, we can notice

that the Nested version for Dubremetz logically performs better, since the Schneider

features benefit less from the additional data for the nested candidates compared to the

Dubremetz ones, which are much more complete. It is still very interesting to watch how

both Improved Dubremetz and Improved Schneider end up coincidentally having the ex-

act same average precision (although the latter presents a slightly better recall). Just

like the Nested version, we could have expected the Dubremetz features to benefit more

from their improvements (which are also more numerous). Indeed, the modifications for

the Schneider features were not as straightforward as some for the Dubremetz ones, and
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were even sometimes aimed at simplifying the features rather than expanding them.

With regard to the embedding features (even if they are not supposed to matter much

when it comes to antimetabole detection), Schneider et al. (2021) took into account the

cosine distance between the embedding vectors of all pairs of terms in the antimetabole

(six in total for a simple ABB’A’ pattern). As we did not deem it useful to compare

the embedding vectors of non-matching pairs, we restricted these computations to the

matching pairs only (thus from six to only two). In addition to that, in order to prevent

any data bias concerning the importance of both pairs, we average the distances for each

candidate, resulting in only one value for this feature.

Following the same idea, the lexical features suffered a similar fate and were restricted to

only the matching pairs of terms in the antimetabole, and were as well averaged over one

value. It is also worth noting that, contrarily to Improved Dubremetz, the modifications

made to the Schneider features are based on its Nested version, since they are much

simpler.

All that being said, as explained by Schneider et al. (2021), the lexical features do not

bring anything useful for the detection of antimetabole; thus, the difference in perfor-

mance between Nested Schneider and Improved Schneider should only be due to the

improvements made to the embedding features. Although the simplification of the lex-

ical features may have had a positive impact as well, since they do not bring any new

information. Indeed, if we remember that a logistic regression model trains not only

weights for its features but also models the interactions between them, the fewer fea-

tures, the less irrelevant interactions the model has to be trained with. And, in the

end, the Improved Schneider model was only able to compete with Improved Dubremetz

because it was built upon the exploitation of nested candidates information.

5.1.3 All model types

As far as the baselines models are concerned, the relative performances depicted in

the Section 4.2.4 were unsurprising for several reasons. First of all, we anticipated the

comparable results of the logistic regression model and of the Support-Vector Machine

thanks to Dubremetz and Nivre (2017), who reported getting similar results with both

models, if not slightly better ones with the logistic regression. We are at least able to

confirm these results on a larger dataset. It can be explained through several factors: an

SVM is less suited for a pure regression task than a logistic regressor, and even concep-

tually, separating a space of antimetabole between salient and not salient instances can
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be a very tricky assignment, as data points can be very close while having a different

annotation.

We also expected the regression tree to perform worse than all other models, even if

maybe not to such an extent; indeed, the model itself is intrinsically much simpler, while

much harder to optimise (“constructing optimal binary decision trees is NP-complete”,

Laurent et al., 1976 [LR76]). Furthermore, the maximal depth of our regression tree

was arbitrarily set to 8 to easily prevent overfitting, but above all to be able to take

advantage of its natural interpretability, as a very large tree is impossible to understand

for a human eye. This is why we included a random forest (Ho, 1995 [Ho95]) for com-

parison, which was logically supposed to perform better than the regression tree while

keeping the same structure. Indeed, the very principle of a random forest is to learn

from multiple trained trees generated with a random factor and to compute their aver-

age, thus learning from several trees rather than only one. Among others, it allows the

random forest to generalise better on unseen data: this is unmistakable if we compare

the results of both models with the same depth (see Section 4.2.4), as the random forest

very clearly outperforms the regression tree whatever the features.

However, is was more difficult to anticipate the relative performances between the ran-

dom forest and our first two models; even with our results, it remains unclear whether

the difference comes from the models themselves, from the restrictive maximal depth of

the random forest (identical to the regression tree for a fair comparison) or from both.

Lastly, we can notice how inadequate the regression tree is for our task by how its perfor-

mances decrease drastically with the Nested and Improved baselines, where the results

of all other models follow the reverse tendency. The regression tree is indeed the only

one who sees both its average precision and its recall drop with Improved Dubremetz

compared to Dubremetz.

5.2 Analysis of the Novel Features and Models

Since the Dubremetz features were thoroughly analysed by their creators (Dubremetz

and Nivre, 2015, 2016, 2017), we will focus on the novel features proposed in this thesis

(see Section 3.4.3).
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5.2.1 Parison

The most startling singularity about parison is how well this features seems to work on

our dataset to discriminate salient antimetabole and uninteresting inverse repetitions.

This result was confirmed through and through, with different experiments and on differ-

ent models: its presence systematically and considerably increased the average precision

of the associated predictive model; although with disparate results for the recall, but

even then, these were never alarming enough to question its overall efficiency.

Our parison feature is in fact declined in three different features weighing on the different

parts on an antimetabole:

1. the “introductions” (what Dubremetz and Nivre called Cleft and Cbb) are comprised

of the words coming before the very first term of the antimetabole and of the words

in between the central terms of the antimetabole. The associated parisonIntro

feature computes the number of corresponding Part-of-Speech tags by mapping

the words of the two previously defined intervals.

2. the “middle intervals” (what Dubremetz and Nivre called Cab and Cba) are com-

prised of the words between each pair of terms of the antimetabole, except for

the central ones. The associated parisonBetweenIntervals feature computes the

average number of corresponding Part-of-Speech tags by mapping symmetrically

the words of the previously defined intervals (Cab with Cba for a four-term an-

timetabole, Cab with Ccb and Cbc with Cba for a six-term antimetabole, etc.).

3. the “conclusions” (what Dubremetz and Nivre called and could have called Cbb

and Cright) are comprised of the words in between the central terms of the an-

timetabole and of the words coming after the very last term of the antimetabole.

The associated parisonConclusion feature computes the number of corresponding

Part-of-Speech tags by mapping the words of the two previously defined intervals.

The fact that the parison features improve the average precision more than the recall

is still to be nuanced by the results of the tree-based models. Indeed, if the parison

improves very marginally or deteriorates the recall of the logistic regressor and of the

SVM, it may well be that their recall without it is already extremely high (respectively

96.3% and 92.9%) ! With the standalone features evaluation, we showed that models

with much lower recalls (21.4% for the regression tree and 77.8% for the random forest)

see it improve substantially along with their average precision with only the addition of
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the parison features.

In order to gain more insight on these three sub-features, let us take a look at their

Partial Dependency Plots, computed for the best model where their impact is the most

significant: the logistic regression model based on Dubremetz and with all novel features

combined. This model, because of its optimal trade-off between simplicity and perfor-

mance, will serve as a reference for the future features analyses.

Put simply, the Partial Dependency Plots (Friedman, 2001 [Fri01]) show the empirical

influence of a specific feature on the predictions of a model and can be very useful to

determine whether a feature helps the model to discriminate its candidates positively

or negatively, and the extent of the feature’s impact. The Partial Dependency Plots for

the three sub-features of parison can be found in the Appendix Section C.7.1, while the

summary plot of all three can be found in the Figure 5.1.

The first interesting result is that the two last sub-features, parisonBetweenIntervals

(Figure C.15) and parisonConclusion (Figure C.16), indicate a positive effect for the

predictions of the model: in other words, the higher the value of the feature, the higher

the score of the candidate. This was completely expected, since we know thanks to the

Chapter 2 that the stacking of rhetorical figures increase their rhetorical saliency. On

another hand, the fact that the first sub-feature, parisonIntro (Figure C.14), shows an

inverse tendency, is quite surprising. It means that depending on the location of the

parison in the candidate, the model either uses it to classify said candidate as a salient

or as a non-salient antimetabole.

However, this conclusion is nuanced by two other evidences. The first one is the actual

relative impact of the three features on the predictions: if we take a look at the y-axes,

or if we consider the three plots at the same time (Figure 5.1), we may notice that

the scale is very different between the first one and the two other ones, suggesting that

the parisonIntro feature is actually much less important than its complementary sub-

features. Thus, the surprising result for parisonIntro is attenuated by the fact that the

sub-feature does not matter much by itself. Furthermore, if we dig deeper, we can par-

tially explain this observation by noticing that parisonIntro concerns (i.e. has a non-zero

value for) around 500 candidates, while parisonBetweenIntervals and parisonConclusion

respectively concern around 4000 and 900 candidates. Lastly, the former has a value

lower than 1 (indicating a moderate if at all existent parison) for almost 90% of its con-

cerned candidates. For comparison, the much more effective parisonBetweenIntervals

feature has a value lower than 1 for 67% of its concerned candidates, in addition to

being much more widespread.
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Figure 5.1: Partial Dependency Plot for all parison features as part of the logistic re-
gression classifier based on Dubremetz with all novel features.

In conclusion, we may confirm the intuition of Schneider et al. (2021), who based their

whole chiasmi candidate extraction algorithm on Part-of-Speech tag, and the assertions

of Harris and Di Marco (2017), that the syntactic structure of the antimetabole is of

high importance with regard to its rhetorical saliency. Nevertheless, such an affirmation

is quite bold considering the objectively limited size of our dataset, which may well be

biased and mislead our conclusions. If anything, this only further emphasizes the need

for bigger, more complete and more diversified datasets for the computational study of

rhetorical figures.

5.2.2 Isocolon

On the contrary, the most startling singularity about isocolon is how... useless it seems to

be as a feature - in the best scenarios. In the worst cases, it is even counterproductive: it

doesn’t have any effect on the performances of the logistic regression model alone, when
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added separately or with all other features, and seriously damages the performances of

our three other models. Unsatisfied with a mitigated result such as raising the average

precision while deteriorating the recall (which they do to the regression tree), the isocolon

features go as far as undermining both for the SVM and the random forest if we add

them to the baseline. Luckily, these effects are heavily limited when the models are

already equipped with all of our other features, making them more robust, as the results

of the ablation study showed us.

Before diving again into Partial Dependency Plots, let us precise what the features are

exactly:

1. First of all, the isocolonInTerms binary feature checks the presence of an isocolon

within the terms of the antimetabole. As an identity of lemmas often leads to an

equal number of syllables, we decided to only check all terms at the same time by

setting this feature’s value to 1 if all terms have the same number of syllables, and

0 in the opposite case.

Similarly to the parison, the three next sub-features check the presence of isocolons in

the introductions, between the terms and in the conclusions of the antimetabole.

2. The isocolonIntro binary feature is set to 1 if the total number of syllables in both

introductory intervals is identical, and otherwise to 0.

3. The isocolonBetweenIntervals feature computes the average number of intervals

that have the same total number of syllables.

4. The isocolonConclusion binary feature is set to 1 if the total number of syllables

in both concluding intervals is identical, and otherwise to 0.

At first glance, the definitions of these features may seem more restrictive than those

for parisons, and could indeed begin to explain why they gave such poor results. In

any case, we will not stop at a first impression, and will see what the numbers have to

say: let us begin by analysing the four sub-features Partial Dependency Plots (in the

Appendix Section C.7.2), computed in similar conditions to the parison. A summary of

all four plots is also given in Figure 5.2.

Interestingly enough, this time, we do not only have one off-setting result, but two.

The ugly ducklings of the isocolon family thus are isocolonInTerms (Figure C.17) and

isocolonConclusion (Figure C.20), which, contrarily to our intuition, prove to us that

the model learned to negatively discriminate instances that show an isocolon within
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Figure 5.2: Partial Dependency Plot for all isocolon features as part of the logistic re-
gression classifier based on Dubremetz with all novel features.

their terms or in their conclusions. Fortunately, the two other sub-features reassure us

by showing a the inverse behavior, consistent with our expectation. On another hand,

the summarising graph (Figure 5.2) presents us two other interesting facts: contrarily

to the parison, all sub-features here seem to have a relatively equivalent importance

with regard to the model’s predictions, and, compared to the parison’s sub-features, the

isocolon ones have an impact similar to the parison’s least important one. Once again,

this somehow softens the counter-intuitive results of the sub-features having a negative

impact on the candidates ratings.

Last but not least, we can also dismiss the preliminary objections to the construction

of these features by seeing how many candidates they concerned. Obviously, the most

widespread feature remains isocolonInTerms with 65% of candidates giving it a value

of 1. The two other binary features, isocolonIntro and isocolonConclusion, both show a

range between 9% and 10% of instances having positive values, while isocolonBetween-

Intervals has around 20% of non-zero values.

In conclusion, the failure of the isocolon features is not due to their rarity, but solely

to the fact that the model did not consider them to be effective discriminating factors
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during its training.

5.2.3 Nominal groups

The nominalGroups feature is easier to analyse since it is not declined in several sub-

features. For each pair of matching terms in an antimetabole, it simply computes the

average number of matching words coming right before and after said terms, as depicted

in the Section 3.4.3. Leaving the field of stacking rhetorical figures, this feature was

intuitively inspired by the fact that our candidates are extracted based on the repetitions

of single words, and not nominal groups, although the latter would make more sense in

numerous cases. Therefore, this nominalGroups feature should have been able to capture

such cases of antimetabole and to help the model to positively discriminate them. But

as we have seen with our first two features, our intuition is rarely entirely proven right.

Let us then take a look at the Partial Dependency Plot for our feature, found in the

Figure 5.3. As “expected”, the feature does not match our expectations: instead of

signaling salient antimetabole, the graph shows us that the bigger the nominal groups

attached to an antimetabole terms, the lower its given score will be. And, this time,

we do not have any other sub-feature to put it into perspective: the nominalGroups

feature is clearly an indicator for uninteresting instances. At this point, we are allowed

to say: “Why, nominalGroups? You were the chosen one. It was said that you would

compensate for the bad features, not join them ! Bring balance to the rhetorical force,

not leave it in darkness...”

Anyway, since 66% of the candidates have a non-zero value and 28% have a value above

1 for this feature, it still means that the feature should be interesting for our model.

So, where does the fault lie ? If we take a closer look at the Partial Dependency Plot,

we can see that the biggest values obtained for the feature are higher than 10, which is

absolutely huge: it means that some instances have both their pairs of terms each inside

a nominal group of ten words (in average). How is that even possible ? Let us see what

these instances look like:

1. We know you ’re a little slut . No , I ’m not ! I ’m not a slut ! I ’m not a slut ! I

’m not a slut ! I ’m not a slut ! I ’m not a slut ! I ain’t no slut !

2. Get up , get up ” - ” Ooh , yeah ” ” Get up , get up , get up ” - ” Get up , get up

, get up ” - ” Get up ” - ” Getting
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Figure 5.3: Partial Dependency Plot for the nominalGroups feature as part of the logistic
regression classifier based on Dubremetz with all novel features.

3. Oh , dear God , please make this crazy kid go away . Go away . Go away . Go

away . Dear God , please make this crazy kid go away . What do you want

4. guitar strings , then pausing to sing . ” Never gon na get old , Never gon na die .

Never gon na get old , Never gon na die . ” Guiseppi Scapellini

5. walk away ? ? Or you ’ll crash ? ? Crash , crash ? ? Oh , you ’ll crash ? ? Crash

, crash ? ? Oh , you ’ll crash ? ?

As you may guess, these instances are not part of the original and manually retrieved

dataset. They come from the additional set of supposed false instances taken randomly

from the Corpus of Contemporary American English (COCA). The first three quoted

examples make up for all the instances that have a value over 7 for the nominalGroups

feature, and the five examples make up for all instances that have a value over 5. There-

fore, it is easily understandable that, with such borderline cases, our feature did not

behave according to our expectations !
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Figure 5.4: Partial Dependency Plot for the repetitionsFront feature as part of the lo-
gistic regression classifier based on Dubremetz with all novel features.

5.2.4 Repetitions

Eventually, the last novel feature that we tried to add to the state of the art was, in a

sense, a continuation of the same state of the art’s ideas. Indeed, many of Dubremetz

and Nivre’s features rely on the idea that an antimetabole is built on an axial symmetry,

beyond the obvious one formed by the terms of the antimetabole itself (AB / B’A’).

Therefore, the repetitions feature try once again to assimilate that sense of symmetry,

by trying to capture some sort of epiphora or of epanaphora (see Section 2.2.2) present

directly around (at the beginning or at the end) the antimetabole’s terms, rather than

at the beginning or at the end of a sentence or of a clause. The repetitions features are

then naturally divided in two:

1. The repetitionsFront feature computes the number of repeated words before the
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Figure 5.5: Partial Dependency Plot for the repetitionsBack feature as part of the logistic
regression classifier based on Dubremetz with all novel features.

first term of each half of the antimetabole (in Cleft and Cbb to borrow Dubremetz

and Nivre’s notation).

2. The repetitionsBack feature computes the number of repeated words after the last

term of each half of the antimetabole (in Cbb and what we could call Cright).

Not unlike the nominalGroups features, the repetitions features lead to shy or nonexis-

tent results improvements for every model it was tested with. One last time (I swear),

we will thus call on two magical Partial Dependency Plots (Figures 5.4 and 5.5) to help

us understand how these features influenced the logistic regression model’s behavior.

Once again, the results are... as surprising as interesting. First of all, the two sub-

features show a contrary influence on the model’s predictions: repetitionsFront indicates
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a non-salient antimetabole when its values get higher while repetitionsBack points to-

wards a higher score, except for the difference that repetitionsBack has a quite greater

impact in terms of scale. This may be explained by the fact that repetitionsBack also

presents a broader range of values, going up to 11 repeated words, while repetitionsFront

stops at a maximum of 6. In addition to that, a further analysis of the features values

shows us that repetitionsBack is given a non-zero value for 1600 candidates, compared

to only 340 for repetitionsFront.

Although, surprisingly enough, the borderline cases encountered in the (previous) Sec-

tion 5.2.3, especially the second one, are found in the highest values of repetitionsBack,

which is yet the “good” feature out of the two. If anything, this suggests that the

repetitionsBack feature has an even greater potential than its Partial Dependency Plot

shows! As to why repetitionsBack works better than repetitionsFront, our data points

to the former being much more widespread and meaningful than the latter; however, we

still lack the necessary linguistic hindsight and a sufficiently large dataset to draw solid

conclusions, instead of being mislead by biased data.

5.2.5 Regression Tree Visualization

The simplicity of the regression tree, which served it poorly up until now seeing how

it performed along with our three other models, becomes its only advantage when it

comes to interpretation. Indeed, one of the specificities of this kind of model is that it

is possible for a human to directly interpret its prediction process, instead of having to

resort to complementary tools such as Partial Dependency Plots. In our case, as our

regression tree did not fit on one page, it can be found in the Appendix Figures C.21

(upper part of the tree), C.22 (lower left part) and C.23 (lower right part). The result-

ing model, following the idea of this Section, was trained with the Dubremetz baseline

features augmented with all of our novel features.

The first part of the tree, which in optimal cases should try to maximize its informa-

tion gain by finding the most interesting splits of the data, already looks here very bad.

Indeed, the first three splits shown in the Figure C.21 only allow the tree to discrimi-

nate three instances (one per split) out of 15009 while already “consuming” 37.5% of its

height.

The fourth split, leading to the remaining two parts of the tree, looks much more inter-

esting: it uses a Dubremetz dependency feature, sameDepWbWa’, to split the data into

two sets containing respectively 12164 (lower left part of the tree) and 2842 instances
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(lower right). Let us go with the biggest split, found in the Figure C.22.

The next split seems once again sub-optimal, since it only classifies seven more instances,

before leaving the hand to another one of Dubremetz features, simScore, taking 1300

instances out of the main split. The smallest one is then split in a weird way, leaving

1250 instances to be rated as non-salient, while the remaining 50 eventually give 20

salient instances. We can already notice that the tree’s recall will probably be very low,

since at this point, it classified about 1300 instances as “false” and only 27 as “true”,

for a ratio of 2% while the proportion of salient instances in the whole dataset is around

4.5%. If we go back to the main split of this part of the tree, still containing more than

10800 instances, we can shake our heads by seeing another somewhat useless split to

classify a single instance as positive; while the last split on this part will not give any-

thing interesting. Thus, from 2%, we are suddenly at 0.2% of instances rated as “true”.

Hopefully, the lower right part of the tree (containing 2842 instances, remember ?) in

the Figure C.23 will do better than its symmetrical counterpart... Interestingly, its first

split uses the same feature as the lower left part, parisonConclusion, but much more ef-

ficiently: 2500 instances on one side and 340 on the other. On the biggest side, however,

the next two splits are quite disappointing: the first one will send 65 instances to the

“non-salient graveyard” with the help of the sameBigram feature from Dubremetz and

Nivre, while the second one classifies 2400 instances as false with mainRep. The last

10 remaining will finally be split by sameTok, and give us 9 instances rated as “true”.

In the end, the 2500-instances split only gave these 9 interesting instances, keeping the

recall as low as ever with a total of 37 “true” for 14668 “false”.

The last split in which we may place all of our remaining hope is the furthest right branch

of the tree, with only 341 instances. Its next split looks promising, with 207 instances

on the left side and 134 on the right; however, the latter will only give 6 additional

positives. The former, on another hand, manages to bring us 200 positives samples at

once with two splits using sameTrigram and punct, and a last single positive on its other

branch.

Eventually, we are thus left with 244 positive instances out of 15009, whose 585 instances

were annotated as true, giving us the expected recall of 42% (see Section 4.2.4). Out of

those 244, 200 were roughly discriminated thanks to 5 features: 4 from the baseline, and

one from the parison features (parisonConclusion), which is not surprising at all given

that it was the most interesting set of features within all of the novel ones. Furthermore,

this specific sub-feature was already seen in the Section 5.2.1 as the most impactful one

in terms of rating with regard to its Partial Dependency Plot. In addition to that, the
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parison features are the most represented novel features in this regression tree, since

they account for 5 splits (and only one discriminating a single instance), the repetitions

for 3 splits (all of which discriminate a single instance), the nominal groups for 1 split

and the isocolon is downright missing.
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6.1 Conclusion

This thesis aimed at contributing to the state of the art concerning the automatic ex-

traction and detection of two related rhetorical figures: chiasmi and antimetabole.

First of all, we investigated many different sources, from dictionaries to past research,

including linguistics, in order to settle on a definition for our two figures. This step

was indeed essential insofar as said sources very often contradicted themselves, and no

consensus could be found for either figure - especially for the chiasmus. Eventually,

we decided to restrict both figures’ definitions in order to make them match our needs

and our computational capacities, although we specifically decided to make them more

wide-ranging than the state of the art’s.

Then, we conducted an extensive study of the state of the art in terms of antimetabole

and chiasmi detection. For the former, the works of Dubremetz and Nivre (2013-2018)

completed previous pioneering work and were very insightful, as well as gave us our first

baseline for future experiments; for the latter, Schneider et al. (2021) inspired us to

venture into chiasmi detection as well, and try not to stop at antimetabole. Throughout

our whole research, the work of Harris et al. was also a beacon in the night and helped

us greatly to grasp the linguistics fundamentals behind our rhetorical figures.

In the next chapter, we detailed the first contribution of this thesis: a complete pipeline

for extracting and annotating chiasmi and antimetabole from raw text. Two similar al-

gorithms had been developed by Dubremetz and Nivre and Schneider et al., respectively

for antimetabole and chiasmi, but the former is to this date unusable and the latter is

flawed by design. In any case, both did not go as far as we did in proposing a tool

that took everything in charge from start to finish - from the raw text to an annotated

dataset. While our extracting of antimetabole proved to be perfectly sound, our method

for extracting chiasmi did not yield any satisfactory results, due to the limitations of
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current embedding models. In the same manner, the principal limitation of our an-

timetabole extractor was the external lemmatizer it used.

Afterward, we presented the second big contribution of this thesis, which consists of a

brand-new and more than 10 times bigger dataset than the only available one from the

state of the art to this date. Even if our dataset contains chiasmi, our extraction tool

only permitted us to annotate its antimetabole. For the annotation, we introduced the

concept of ”nested“ chiasmi and antimetabole, resulting from our new definition of both

figures.

Eventually, we presented the baselines used for our antimetabole detection experiments,

the four different types of traditional Machine Learning models and the four new sets of

features we introduced in our attempt at improving the state of the art’s baselines.

In the Results section, we briefly evaluated our antimetabole extraction algorithm’s

performances. Most importantly, we thoroughly presented the numerous results from

our various experiments with our different baselines, models and features for detecting

rhetorically salient antimetabole among the set of candidates retrieved by our extrac-

tion pipeline. In summary, we managed to substantially improve the state of the art’s

performances by enhancing their own features. On another hand, we also improved

the baselines by adding our new features, and observed that one feature in particular

gave impressive results, one other surprisingly bad results, while the two remaining gave

mitigated outcomes. We confirmed these findings through different experiments on a

logistic regression model, before corroborating them with four different models.

The model’s relative performances broadly matched our expectations, with the logistic

regressor closely followed by the SVM, the random forest staying a good step behind

and the regression tree being completely out of the race.

In the last section, we further investigated the results of our experiments. First of all,

we proposed explanations as to how our improvements of the baselines managed to get

such remarkable results, and clarified the effect that the nested antimetabole candi-

dates had on the model’s predictions, and then justified our expectations for the model

performances: in particular, the regression tree and random forest were purposefully

restrained by their maximal depth, in order to allow a direct interpretation. Thereafter,

we conducted an extensive analysis of our four novel features. We disclosed their par-

ticular characteristics of the sub-features for each set, and explained their respective

influence on a specific model’s predictions with the help of Partial Dependency Plots.

We completed this study with additional statistical evidences, and eventually found out

borderline instances in our dataset that partially mislead the models training for some
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of the features.

Eventually, we proposed a comprehensive examination of our full regression tree trained

with all of our features.

6.2 Insights

I deem it important to warn the reader that this section contains a lot of, if not only,

personal opinions. These opinions commit only the author of this thesis at the moment

he wrote it.

6.2.1 Research Work

Working on this thesis, and especially on the state of the art, has definitely been a crucial

lesson for me with regard to the teachings I received about scientific work and scientific

research. In computer science in particular1, one aspect of this ”scientific research work“

is often neglected, and I have had the misfortune to witness it by myself while working

on this thesis: the reproducibility of a scientific experiment.

As trivial as it may seem, I consider this point to be absolutely crucial for any valid

scientific work. One of the pillars of modern science is, according to me, peer-reviewing:

being able to double-check any assertion made by any colleague, to reproduce any ex-

periment, and finally, to validate or refute any result and its associated hypothesis or

conclusion. We live in an era where information flows and ”fake news“ have never been

so important, and at the same time where scientific communities are sometimes ignored,

if not laughed at, and struggle to be heard even if they manage to reach a global consen-

sus exempt of any credible scientific contradiction. I am thinking here about the IPCC

(Intergovernmental Panel on Climate Change), which was created in 1988, whose first

report was published in 1990, and yet, more than 30 years later, their reports are still

not taken seriously enough. If anything, this example tells me that scientific research

should at the very least be taken seriously by its researchers. Otherwise, I feel like it is

unfair to expect others to give them any credit.

I have no intention of casting stones, or let alone, as a master student, of having the

1If this assertion seems very presumptuous due to my lack of experience in domains other than com-
puter science, and even in this one, I base it on the previously mentioned teachings.
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audacity of criticizing scientific work that has been published and peer-reviewed. How-

ever, as I mentioned it, my view of peer-reviewing in computer science is not limited

to the published article, but also - if not especially - encompasses the implementation.

And as I tried to work on the state of the art of this thesis, I found myself more than

once utterly unable to replicate (and a fortiori reproduce) any experiment described

in published articles. Unmaintained, inaccessible or non-functional code, unavailable

data - the issues have been diverse and I will not speculate further on their causes. I

simply felt that I could not avoid, as part of a fundamental research project, attracting

attention on these matters; at least in a self-directed (understand: directed at myself)

pedagogical approach.

6.2.2 Application

As incongruous as it may seem to discuss the potential applications of this thesis’ work

at its very end, I considered this choice to be more coherent with regard to the personal

conclusion I will add to it.

First of all, the most recurrent application in previous articles on the matter (see Chapter

2) concerns stylometric analyses. Indeed, the computational study and especially detec-

tion of rhetorical figures immediately gives way to imagining a complete tool for judging,

sorting, analyzing, and classifying various texts: the presence or absence of rhetorical

figures may, according to the context, be an indicator of quality, style, thought, or may

on the contrary suggest superficiality, manipulation or fallacies, especially in speeches

or argumentative texts.

On another hand, one idea inspired from Dubremetz (2013) stroke a chord with my

writing passion: instead of detecting rhetorical figures, large enough datasets could very

well help complex models to automatically generate instances of such figures, and pro-

pose them as a writing assistance, or help to enrich already existing figures. This could

find an application in many various domains, from pedagogy (teaching poetry at school

could become much easier and more fun) to translation (as rhetorical figures are often

held as major hurdles in translating texts) as well as tools for (everyday or professional)

writing assistance.

From a linguistic point of view, any large study on rhetorical figures can also be very

insightful for various research fields, from classifying to analyzing specific figures. As we

saw in the Section 2.1, giving a proper definition of a rhetorical figure can sometimes be
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much trickier than it seems, and would benefit much from statistical as well as compu-

tational insights.

6.2.3 Personal Assessment

All of that being said, I would not be true to myself if I did not try to contradict it. As

I am fond of asking myself questions, I could not help but wondering, while working on

this thesis: do we need - do we even want - computers to help us understanding rhetorical

figures? Do we deem it important enough to carry on such experimental work, which

could only find its purpose in 20, or 30 years? As both a writer and a (future) computer

engineer, I could not find a clear answer to these questions.

However, my ecologist conscience tells me otherwise: in the face of both worldwide

and personal crises, from the climate crisis (going hand in hand with the biodiversity

collapse and the exceeding of many irreversible planetary limits) to personal enquiries

about the kind of world I would like to live in tomorrow, my personal answer to the two

aforementioned questions, at this time, is negative.

Before calling it ”the naive heat of youth“ and brushing it aside, let me clarify that I

certainly do not intend to ”save or change the world“. My personal approach to this

is a simple matter of coherence with myself and my values. And, as much as I may

find working on rhetorical figures interesting and entertaining, staying in denial of the

previously cited crises (and more uncited) builds up too much cognitive dissonance for

me to pursue it as is.

6.3 Future Work

The possibilities for carrying on with this work are plentiful for each phase. First of

all, the extraction pipeline, as explained in Section 3.2, only works for antimetabole.

In addition to that, the only chiasmi extraction algorithm that exists to this date is

from Schneider et al. (2021), but cannot identify all chiasmi according to our definition

given in Section 2.1.1. Thus, either an improvement of Schneider et al.’s algorithm or

a redesign of ours is necessary to carry out chiasmi detection. Furthermore, we saw

that the main limitation of our antimetabole extractor was the lemmatizer it used: as
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a consequence, finding a better lemmatizer or a manual way to counterbalance its de-

fects would be a great improvement for the automatic extraction part. Lastly, Section

4.1 demonstrated that the empirical size of 30 tokens for the extraction introduced by

Dubremetz and Nivre (2015) does not hold anymore and should be revised.

Concerning the data itself and its annotation, we managed to greatly contribute to

expanding the current available datasets, but some consolidation work still needs to be

done. We saw in Section 5.2 that, contrarily to Dubremetz and Nivre’s intuition in 2017,

we cannot completely disregard any unseen text as ”False“; moreover, these borderline

cases raise another annotation issue: dealing with sentences that bring a lot of candi-

dates with very few words, while only one of them can be annotated as the antimetabole.

These similar candidates with different annotations throw the model training out of bal-

ance, similarly to the distinction between the nested and binary candidates. In order to

be able to make the most out of our newfound data, these intricate matters need to be

addressed. On another hand, the binary annotation between ”salient“ and ”not salient“

may be improved with regard to the desired prediction outcomes, which are discrete rat-

ings. To that end, one solution worth exploring could be to annotate the candidates in

pairs rather than giving them an absolute label, as is often done in automatic argument

quality assessment; deciding which of two candidates is more salient could indeed make

annotation easier and more intuitive, as well as removing the need for nonsensical labels

such as ”Borderline antimetabole“, all the while resulting in a more nuanced annotation

scheme. The associated increase in resources needed for annotation could be counter-

balanced by crowd-sourcing.

Nonetheless, it goes without saying that any further development of this work should be

preceded by a thorough reflection on whether said work should be developed.
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The following definitions are expressly summarized or simplified for brevity. For more

details, especially about the sources of these definitions, please refer to the Sections 2.1,

2.2 or 3.4.3 where most of these definitions are presented and discussed. The main source

for these definitions is Harris and Di Marco (2017) [HD17].

• Anaphora: see Epanaphora.

• Antimetabole: repetition of words in reverse order.

[W]1...[W]2...[W]n...[W]n...[W]2...[W]1 Drake loves loons. Loons love Drake.

• Antithesis: proximally opposed predications, through antonyms or affirmatives

and negations.

They wanted peace? Let’s bring them war.

• Chiasmus: consists of the repetition of two or more pairs of related words in the

reverse order.

He came in triumph and in defeat departs.

• Epanaphora: repetition of a word or a group of words at the beginning of suc-

cessive sequences of language (e.g. sentences).

I am an actor. I am a writer. I am a producer. I am a director. I am a

magician.

• Epiphora: repetition of a word or a group of words at the end of successive

sequences of language (e.g. sentences).

I’m so gullible. I’m so damn gullible. And I am so sick of me being gullible.

• Epistrophe: see Epiphora.

• Isocolon: denotes members that are identical in number of syllables or in scansion.

Was ever woman in this humour woo’d? / Was ever woman in this humour won?
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• Mesodiplosis: the occurrence of the same word or word sequence in the middle

of proximal clauses or phrases.

All for one, one for all.

• Parison: A scheme of syntactic repetition, often referred to as syntactic paral-

lelism: the proximal repetition of the same syntactic pattern.

My life is spent alone, without wealth, without status, without love, and

without hope.
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B.1 Data Augmentation and Machine Learning for

Rhetorical Figures

Rhetorical figures are not only used in advertisements or political speeches, but also in

fake news, hate speech or argumentations. Detecting those figures can help improving

the overall text understanding and detect subtle meanings.

The thesis focuses on rhetorical figures that are especially used for persuasion in ar-

guments. Fahnestock [1] describes as examples for these figures with “argumentative

potential” the figures antimetabole and chiasmus. Both show a crisscross pattern with

antimetabole using the same words (e.g., “eat to live, not live to eat”) and chiasmus

using contrary words (“the spirit is willing but weak is the flesh”).

However, those figures are rather rare, causing a decrease of accuracy in the detection

with the use of statistical methods [2]. In [3] and [4], the authors were not able to use

machine learning for the detection of chiasmus as the dataset was too small. The goal

of this thesis is to extend existing datasets by collecting examples and developing suit-

able data augmentation techniques. The next step is implementing different rule-based

or machine learning algorithms (e.g., active learning for small datasets) and comparing

their accuracy for the detection of chiasmus and antimetabole.

B.1.1 References

1. Fahnestock, Jeanne. Rhetorical figures in science. Oxford University Press on

Demand, 2002.
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2. Dubremetz, Marie, and Joakim Nivre. “Machine learning for rhetorical figure

detection: More chiasmus with less annotation.” Proceedings of the 21st Nordic

Conference on Computational Linguistics. 2017.

3. Dubremetz, Marie, and Joakim Nivre. “Rhetorical figure detection: The case of

chiasmus.” Proceedings of the Fourth Workshop on Computational Linguistics for

Literature. 2015.

4. Dubremetz, Marie, and Joakim Nivre. “Syntax matters for rhetorical structure:

The case of chiasmus.” Proceedings of the Fifth Workshop on Computational

Linguistics for Literature. 2016.
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C Figures

C.1 Extraction pipeline

Figure C.1: An example of Doccano’s graphical user interface for annotation.
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C Figures

Figure C.2: An extract of an annotated XML file generated by the extraction pipeline.

C.2 Dubremetz and Nivre (2015)

Figure C.3: Average precision, and precision at a given top rank, for each experiment,

taken from Dubremetz and Nivre (2015).
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C Figures

C.3 Dubremetz and Nivre (2016)

Figure C.4: Average precision for chiasmus detection (test set), taken from Dubremetz

and Nivre (2016).

Figure C.5: Average precision for chiasmus detection (Sherlock Holmes set), taken from

Dubremetz and Nivre (2016).

C.4 Dubremetz and Nivre (2017)

Figure C.6: Results for logistic regression model (Machine) with comparison to the hand-

tuned models of Dubremetz and Nivre (2015; 2016) (Human), taken from

Dubremetz and Nivre (2017).
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C Figures

C.5 Schneider et al. (2021)

Figure C.7: Average precision for different feature combinations. D=Dubremetz fea-

tures, L=lexical features, E=embedding features, taken from Schneider et

al. (2021).

Figure C.8: Number of correct examples among the top 100 ranked ones in unseen texts

for the Dubremetz method baseline, the PoS inversions with Dubremetz

features and the Dubremetz+lexical+embedding (DLE) features, taken from

Schneider et al. (2021).
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C Figures

C.6 Dubremetz and Nivre (2018)

Figure C.9: Annotation of 100 randomly selected chiasmus, epanaphora and epiphora

candidates, taken from Dubremetz and Nivre (2018).

Figure C.10: Choosing the best model for epanaphora, taken from Dubremetz and Nivre

(2018).
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C Figures

Figure C.11: Choosing the best model for epiphora, taken from Dubremetz and Nivre

(2018).

Figure C.12: Results for the epanaphora experiments, taken from Dubremetz and Nivre

(2018).

Figure C.13: Results for the epiphora experiments, taken from Dubremetz and Nivre

(2018).
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C Figures

C.7 Partial Dependency Plots

C.7.1 Parison

Figure C.14: Partial Dependency Plot for the parisonIntro feature as part of the logistic

regression classifier based on Dubremetz with all novel features.
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C Figures

Figure C.15: Partial Dependency Plot for the parisonBetween feature as part of the

logistic regression classifier based on Dubremetz with all novel features.
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C Figures

Figure C.16: Partial Dependency Plot for the parisonConclusion feature as part of the

logistic regression classifier based on Dubremetz with all novel features.
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C Figures

C.7.2 Isocolon

Figure C.17: Partial Dependency Plot for the isocolonInTerms feature as part of the

logistic regression classifier based on Dubremetz with all novel features.
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C Figures

Figure C.18: Partial Dependency Plot for the isocolonIntro feature as part of the logistic

regression classifier based on Dubremetz with all novel features.
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C Figures

Figure C.19: Partial Dependency Plot for the isocolonBetween feature as part of the

logistic regression classifier based on Dubremetz with all novel features.
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C Figures

Figure C.20: Partial Dependency Plot for the isocolonConclusion feature as part of the

logistic regression classifier based on Dubremetz with all novel features.
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C Figures

C.8 Tree Visualization

Figure C.21: Display of the upper half of the regression tree based on Dubremetz with

all novel features.
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C Figures

Figure C.22: Display of the lower left half of the regression tree based on Dubremetz

with all novel features.
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C Figures

Figure C.23: Display of the lower right half of the regression tree based on Dubremetz

with all novel features.
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D Code

D.1 Initialising a Stanza pipeline

1 import stanza

2 from stanza.pipeline.core import DownloadMethod

3

4 stanza.download('en', processors='tokenize, lemma, pos, depparse')

5 processingPipeline = stanza.Pipeline('en', processors='tokenize, lemma,

pos, depparse', download_method=DownloadMethod.REUSE_RESOURCES)↪→

6

7 # fileContent contains the raw text

8 document = processingPipeline(fileContent)

9 documentWords = document.iter_words()

10 # documentWords is an Iterable containing Words
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die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeichnet sind,

sowie, dass ich die Masterarbeit in gleicher oder ähnlicher Form noch keiner anderen
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