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Abstract

Computer Linguists have long looked at rhetorical devices and how best they could

be computed by - and used for - Natural Language Processing (NLP) techniques. How-

ever, one such figure was barely studied until the last decade: the chiasmus. This Master

Thesis will build upon the opening works of the last fifteen years while focusing on the

detection of antimetaboles, a subcategory of chiasmi. Its aim is to study the effective-

ness and accuracy of transfer learning regarding this task, using pre-trained transformers

neural networks and to compare it to the results obtained using classical machine learn-

ing methods from the past research works. Specifically, we will show that transformers

can offer very good results regarding this task but that those results are actually mislead-

ing, as they tend to look for literary properties that are not intrinsic to chiasmi. Finally,

we will also share an annotated corpus of several hundred chiasmi, improving upon the

previous corpora by an order of magnitude and opening up more possibilities for future

researches.

Keywords - Computer Linguistics, Natural Language Processing, Chiasmus Detection,

Deep Learning, Transformers
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1 Introduction
Natural Language Processing ("NLP") has progressed steeply over the last two decades

and is now offering useful results in several fields, with even more promising ones

currently being researched. Among all those fields, one in particular is the detection

in texts of interesting rhetorical figures - also known as figures of speech, or rhetorical

devices. The interest of this rhetorical figures detection task is twofold: first, such

rhetorical figures can be used by further NLP processes such as (but not limited to)

sentiment analysis (e.g. Yadav and Vishwakarma (2020)) or essay grading (e.g. Ramesh

and Sanampudi (2022)); second, it offers in and of itself further understanding on how

to process natural language, thanks to its reliance on all three levels of language: lexical,

grammatical and semantic.

Being an integral piece of human communication, rhetorical figures have interested

computational linguists for as long as the field has existed. An example would be the

book Processing Metonymy and Metaphor (Fass, Lesgold, & Patel, 1997), which was

already trying to study and explain how those two figures could be best understood,

classified and computationally processed twenty-five years ago. But the focus of such

studies often fell on the most common devices of speech while some were barely stud-

ied, if at all, until much more recently.

Such is the case of the chiasmus, an excessively rare rhetorical figure in the English lan-

guage1, which may explain the lack of research around them. Chiasmi are a particularly

interesting figure to study, but also a high challenge for any NLP system as they exist at

the border between tropes and schemes. Tropes are the rhetorical devices which focus

on the meaning of words (e.g. metaphors or oxymorons), while schemes are the devices

which focus on patterns within the language (e.g. parallelism or anaphora).

This in-between makes chiasmi particularly hard to use but also particularly potent fig-

ures when properly employed, as they are able to efficiently and aesthetically convey

either similarity or opposition between two clauses. Being able to detect them with

a high degree of confidence could thus improve various NLP tasks focusing on liter-

ary works, especially when combined with other quality markers such as grammatical

structure or vocabulary analysis.

As we will explore more deeply in Chapter 3, extensive work on the detection of chiasmi

only began a decade ago with the pioneering works of Dubremetz and Nivre during the

conduct of Marie Dubremetz’s Ph.D (2014 - 2017). Since then however, the subject of

1Dubremetz and Nivre (2015) used the book River War by Winston Churchill to exemplify the rarity of
chiasmi: only one instance of a purposeful, rhetorically salient chiasmus can be found in the more
than one hundred thousand words of this work written by an excellent rhetorician.

5



the chiasmus was only barely explored by the NLP community: only one other article

was published, Schneider, Barz, Brandes, Marshall, and Denzler (2021), which became

the state of the art by detecting antimetaboles with the same rate as Dubremetz and

Nivre (2017) while also detecting some harder to catch semantic chiasmi.

All of those works were led using tools from classical statistical theory and machine

learning, and we thus decided for this thesis to explore the possible uses of deep learning

methods to solve the problem of salient chiasmi detection. In particular, this work aims

to study how salient antimetabole could be detected using transformers (refer to

Wolf et al. (2020a) for a survey), a subcategory of deep neural networks, as opposed to

the deterministic algorithms or classical machine learning methods which were used up

until now.

We will hence show that transformers can be highly effective to detect such rhetorical

figures, but that this effectiveness is often misleading - partly at least - and actually a

result of a bias toward features not directly related to antimetaboles. We will then dis-

cuss how this bias could be mitigated in order for transformers to look at more inherent

qualities of antimetaboles instead of focusing on extrinsic properties that can, and do,

mislead their results.

Another important contribution of this thesis is the large amount of chiasmi data we

gathered. A large dataset composed of hundreds of salient chiasmi, thousands of ran-

dom criss-cross patterns (i.e. non-salient chiasmi) and thousands of random sentences

from a large array of sources have been compiled and is now freely available for anyone

who wish to pursue researches on chiasmi and antimetaboles.

1.1 Organisation of the Thesis

This thesis will be divided into five main parts: first, we will explore the technical back-

ground necessary to properly understand the terms and techniques used in this thesis.

Then, we will explore the academic background of the task at hand, beginning with

a general overview of the field of natural language processing before focusing on the

specific task of chiasmus detection. Subsequently, we will focus on the methodology

we followed throughout the thesis to obtain our results before presenting those results

in a subsequent chapter. Finally, we will discuss those results before concluding with

a general note on our works and findings, and propose some ideas for future works on

this subject.
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2 Technical Background
In this chapter, we will define and explain the most important points on which this thesis

relies. More precisely, the first section will focus on linguistics, with the aim to formally

define the figures we are looking into, while the second section will focus on computer

science, giving the necessary technical background to understand the techniques of ma-

chine learning discussed in the following chapters.

2.1 Defining Chiasmi and Antimetaboles

Etymologically, the name "chiasmus" finds its origin from the Greek χιάζ ω - “to shape

like the letter χ” - because the criss-cross pattern of its elements was linked with the

cross-like shape of this antic letter. However, an etymological explanation of the word

is not enough to delve deeper into a study of chiasmi and how computer could detect

them. We can thus define a chiasmus as follow:

Definition 1. Chiasmus: The inverse repetition of any two pairs of linguistic elements

in a larger coherent body of text.

Those inverse repetition are also sometimes described as a "criss-cross pattern" or a

"chiastic pattern" in the text and can be visualised with Figure 1. Our definition of a

chiasmus is purposefully vague, as previous definitions have up until now been var-

ied, overlapping and sometimes even contradicting. For example, Dubremetz and Nivre

(2017) define a chiasmus as "[a repeating] pair of identical words in reverse order" while

Schneider et al. (2021) define a chiasmus as "an inversion of semantically or syntacti-

cally related words, phrases, or sentences". Therefore, we decided to take inspiration

from Harris, Di Marco, Ruan, and O’Reilly (2018) for our work and aimed at a general

and all-purpose definition for chiasmi, which could then be sub-divided into different

types of chiasmi.

In particular, one such subtype of the chiasmus is the antimetabole on which this thesis

will focus from now on. Antimetaboles can be defined as follow:

Definition 2. Antimetabole: A "lexical chiasmus" (Harris et al., 2018), that is an in-

verse repetition of lexical elements named "lemmata".
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(A) (B)
Dedication must be your tunnel to success :

achievement occurs through commitment
(B′) (A′)

Figure 1: A visualisation of the criss-cross pattern in a (semantic) chiasmus

Definition 3. Lemma (plural lemmata or lemmas): In linguistics, the canonical form

of a given set of related words.2

Antimetaboles have a wide range examples, but some of them are particularly known

to the English speaking public such as Examples 1 and 2. In some cases, they even

became prototypical of what it means to be an antimetabole in the general culture for

their simplicity and efficiency - although it does not mean that antimetaboles are en-

tirely restricted to their most prototypical examples and subtler ones definitely exist like

Example 3.

• (1) One for all , all for one .3

• (2) Live not to eat , but eat to live .4

• (3) The first half of life consists of the capacity to enjoy without the chance ; the

last half consists of the chance without the capacity .

An additional, but very important point, is the question of what exactly is a rhetorical

figure (Harris et al., 2018). Most would agree that Examples 1 to 3 are good examples

of antimetaboles, while Example 4 below does not appear to contain any noteworthy

chiastic repetition. However, if we go by our strict definition of antimetabole, Example

4 is indeed an antimetabole because of the inverse repetition on the lemmata "I" and

"plant".

• (4) I would like having plants, especially plants that fit well with the furniture I
bought.

2An example of a lemma would be hunt, which is the lemma associated with several words: "to hunt",
"hunted", "(a) hunt", "hunts" and more.

3Alexandre Dumas, originally in French: "Un pour tous, tous pour un".
4Socrates (sometimes also attributed to Benjamin Franklin).
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From now on, we will then refer to phrases like Examples 1 to 3 not simply as an-

timetaboles but as (rhetorically) salient antimetaboles, while phrases like Example 4

will be referred to as non-salient antimetabole. The reasoning behind this is that, while

they all technically are antimetabole, only some of them have literary interest and should

be detected. This work will therefore mostly focus on the detection of salient an-

timetaboles and their separation from non-salient ones.

2.2 A quick exploration of Machine Learning

Definition 4. Machine Learning (ML)5: "The use and development of computer sys-

tems that are able to learn and adapt without following explicit instructions, by using

algorithms and statistical models to analyse and draw inferences from patterns in data."

The link between NLP and ML runs deep, as the latter is nowadays one of the for-

mer’s most used tool for a plethora of various tasks ranging from text preprocessing (Qi,

Zhang, Zhang, Bolton, & Manning, 2020) to content summarization (Nallapati, Zhou,

dos Santos, Gulcere, & Xiang, 2016) or quality evaluation (Wachsmuth, Al-Khatib, &

Stein, 2016). ML can moreover be divided into several subcategories, with the main dis-

tinction drawn in this thesis being "Classical Machine Learning" (Classical ML) against

"Artificial Neural Networks" (ANN) and - in particular - "Deep Learning" (DL). This

specific distinction between Classical ML and ANN is interesting to us, as all works un-

til now have used Classical ML to detect chiasmi (Dubremetz & Nivre, 2017; Schneider

et al., 2021) whereas this work aims to study the effectiveness of Deep Learning models

for the selfsame task.

2.2.1 Classical Machine Learning

Definition 5. Classical Machine Learning: The set of statistical tools aiming to learn

conclusions about a given dataset by using specific mathematical features, like the dis-

tance between data-points or the direction of vectors.

5From the Oxford Language dictionary.
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Figure 2: A visualisation of a simple fully connected ANN with one input layer, two
hidden layers and one output layer.

Two particularly known examples - but far from the only ones - of Classical ML are:

• Support Vector Machines ("SVM", first presented in Cortes and Vapnik (1995)

under the name of "Support Vector Networks") which aim to classify a collection

of data points by translating them into a high-dimensional space before drawing

a line maximising the distance between points in that space. This line can then be

used to classify new data points either in "Set A" or "Set B".

• Logistic Regression (a mathematical method finding its roots in the 19th century

with the works of P. F. Verhulst, between 1838 and 1847) which aim to determine

the behavior of a set of points by trying to find an underlying mathematical func-

tion their distribution follows, and then use that function to try and predict the

position of future points or classify new ones.

The common characteristic of Classical ML methods is that they study the available

data as a whole to try and extract interesting mathematical features from it, with such

underlying features being then used for prediction of future data points or classification

of new ones.

2.2.2 Artificial Neural Networks

Definition 6. Artificial Neural Networks ("ANN"): A network of interconnected nodes

(see Figure 2) which aims to emulate a simplified version of animal brains to process

inputs: the nodes are therefore called neurons, and the whole network a neural network.
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The idea of ANN originated with the perceptron, a modelisation of the visual process-

ing within the human brain (Rosenblatt, 1958). ANN process their input features by

forwarding them to a layer of "neurons", with each neuron being a combination of a

linear function processing its inputs and a non-linear function transforming the linear

function’s output into a non-linear one (Figure 3 illustrates the working of an artificial

neuron). This output is then forwarded to another layer of neuron, and this feed-forward

chain can be repeated as many times as needed.

Once the information has reached the last layer of neurons, its output(s) are then used as

the result of the computation. Different tasks can be emulated with different architec-

tures of output layers: identification tasks only need one neuron, with its activation or

not signifying true or false; classification tasks use as many neurons as there is possible

classes, one for each; generation use as many neurons as is necessary to encode the

generated result; etc...

This architecture allows ANN to emulate any mathematical functions, including highly

non-linear ones thanks to the non-linear functions within neurons6. As all data pro-

cessing tasks can be summed up to equivalent mathematical functions (although those

functions are most of the time incredibly complex), any of them can theoretically be

solved by a properly crafted ANN.

ANN are trained in a very different way than Classical ML tools: rather than looking

at datasets as a whole, they only ever look at one (or a few) data point(s) at a time.

A simplified but interesting way to understand this is as follow: during the training

process, they compute for each new data point "how far" from the correct result their

own results are before adjusting their neurons’ inner parameters accordingly, i.e. so that

their results would be closer to the correct one if they passed on the same data again.

In practice, ANN use a loss function when training: this function gives a loss value that

quantifies the distance between the correct output and the predicted output. A method

called backpropagation (D. Rumelhart, Hinton, & Williams, 1986)7 (abbreviated from

"backward propagation") is then used to adjust the network’s parameters accordingly:

a gradient of the loss function with respect to each of the parameters of the network

is computed, beginning with the parameters of the last layer and using those results to

propagate the gradient computation backward (hence its name). Finally, this gradient is

used to adjust the parameters accordingly, edging them closer to the expected output.

Computing the gradients with respect to a loss function instead of computing them

directly with respect to the output makes the process much easier because of the reduced
6If neurons had a purely linear behavior, ANN could only emulate linear functions since any linear

combination of linear functions is a linear function itself.
7We cite here D. Rumelhart et al. (1986) as they were the first to coin the term "backpropagation",

although the idea itself was first studied in the sixties.
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Figure 3: The inner working of an artificial neuron in an ANN. Bias and Coe f fi are
inner parameters, φ(.) is a non-linear function.

amount of dimension. The discovery and generalized usage of backpropagation is one

of the key factor allowing neural networks to work as they do today.

2.2.3 Deep Neural Networks

Definition 7. Deep Neural Network ("DNN"): An ANN with a high number8 of neuron

layers between the input and the output.

Definition 8. Deep Learning ("DL")9: The training and use of Deep Neural Networks

to execute tasks and solve problems.

DNN were first discussed in Rosenblatt (1958), and the first theoretical algorithm for

them was proposed by Lapa and Ivakhnenko (1967). They aim to solve problems

which are not easy to mathematically define. Specifically, their high number of lay-

ers (called hidden layers, as they are not directly interacted with by external users)

allows more control over the architecture of the network and thus help shaping it to

better solve specific problems. Particularly well-known examples of Deep Learning

methods are Convolutional Neural Networks ("CNN"; first named in LeCun, Bottou,

Bengio, and Haffner (1998) although the concept was described as early as Fukushima

and Miyake (1982)) and Recurrent Neural Networks ("RNN"; D. E. Rumelhart, Hinton,

and Williams, 1986).
8An ANN is often considered "deep" when it has at least ten hidden layers.
9The name Deep Learning was first proposed by Dechter (1986)
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In a CNN, some of the hidden layers are not made of neurons but instead perform a

convolution operation of their inputs. This makes the network’s pattern recognition

abilities invariant to translation and scaling, which in turn helps in tasks such as the

detection of features whose position and size are not fixed (e.g. objects within a larger

image).

In a RNN, the output of "higher" layers when processing one data point is then used

as input for "earlier" layers when processing the next data point which creates a form

of "memory of the past" and allows them to better process strings of data points with a

temporal relation between them.

2.2.4 Transformers

Transformers are a very recent addition to the family of Deep Learning algorithms, as

they were proposed by Vaswani et al. (2017) only five years ago. However, in this short

time frame, they have taken over more and more tasks that were previously run by other

kind of Neural Networks, in particular in NLP in which they have become the de facto

algorithms to use for most tasks. Transformers now enhance Google searches (Nayak,

2019) or allow machine to converse with humans, write code or craft poems with a

low amount of error (ChatGPT; OpenAI, 2022). The two most common transformer

architectures for NLP are visible in Figure 4.

Unlike Long Short-Term Memory networks ("LSTM"; Hochreiter and Schmidhuber,

1997), a subcategory of RNN and the previously most widely used DNN for NLP,

transformers use a mechanism called self-attention to process input sequences in a paral-

lelised manner. This mechanism allows them to handle longer inputs of variable length,

and make both training and using them easier and faster thanks to the added opportunity

of parallelisation. We can therefore define them as follow:

Definition 9. Transformer: A Deep Neural Network which uses mechanisms of self-

learned attention to process entire input sequences in a parallelised, permutation in-

variant manner.

Specifically, self-attention refers to the model using dynamically learned attention weights

to process input sequences while attending to all parts those sequences simultaneously.

This results in two things: on one hand, a transformer is able to self-focus its attention

on key points within the input while not looking too deeply into parts deemed less in-

teresting; while on the other hand, it allows it to process the relation between words

without being hampered by the distance between them - something that was commonly

13



Figure 4: The two most common architectures of transformers for NLP. An encoder
transforms a text into a coded output that can then be used by further neuron
layers or full ANN, a decoder transforms a coded input into readable text.
Both are combined in "Sequence To Sequence" tasks like Machine Transla-
tion.

hurtful to RNN because of the problem of "vanishing" or "exploding" gradients (dis-

cussed in Bengio, Frasconi, and Simard, 1993).

Doing so is highly valuable to NLP tasks in particular, as the context around words - as

much before than after them - is important to better understand their meaning and role

in a sentence. Their architecture also inherently scales with training data and model size

- meaning that larger models and more data usually yield better results.

On the more technical side, self-attention mechanisms work by first projecting the input

sequence into a higher-dimensional space using a linear transformation. The model

then computes the dot product of this transformed input with a set of learned weights.

Finally, those dot products are scaled via a learned scalar factor and normalized10 to

obtain attention weights, which represents the importance of each elements according

to the algorithm’s training.

10Usually, the normalization is done with a softmax function which transforms all weights to numbers
between 0 and 1, with their sum equal to 1.
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3 Theoretical Background
This chapter will summarise the literature reviewed while writing this master’s thesis,

providing a theoretical and historical background to the task at hand. We will first

approach the more general subject of NLP, before delving into the more specific case of

chiasmus detection. The chapter will then end on an additional note about linguistics,

brought to our attention as we were studying the past works on chiasmi.

3.1 Natural Language Processing

3.1.1 A historical Review of NLP

3.1.1.1 The early History

The history of modern NLP11 arguably begins in 1950, when Alan Turing described

the Turing Test - called the Imitation Game in Turing’s original article (Turing, 1950).

This particularly well-known eponymous thought experiment describes a test through

which we could test the "intelligence" of a machine, focusing on its ability to understand

and communicate with humans via textual means without being noticed as a machine.

Admittedly, this "test" can not be considered as a true proof of intelligence or thinking

processes should a machine pass it, and has been criticised from a scientific perspective.

The book "Parsing the Turing Test" (Epstein, Roberts, & Beber, 2009) is an excellent

example of that, with numerous editors’ notes from various sources on top of the original

article showing several of its weaknesses. However, it is still the first wildly spread

article evoking the real possibility of machines understanding - and communicating in -

human languages.

A few years after Turing’s thought experiment, on January 7th, 1954, a particularly

influential event happened in New York, in the headquarters of IBM: the Georgetown-

IBM Experiment on machine translation. Described and discussed in detail in Hutchins

(2004), the experiment made the front page of the New York Times on January 8th,

1954 as "a public demonstration of what is believed to be the first successful use of a

machine to translate meaningful texts from one language to another". The public event

saw the translations of more than sixty Russian sentences into English, using around

250 words and six grammatical rules, and sparked at that time interest and hope for a

general translating Machine in the coming years. This tour de force was the results of

the work of four persons: from the Georgetown University, Leon Dostert12 and Paul

11Alongside various web and academic researches, Khurana, Koli, Khatter, and Singh (2022) and Kumar
(2013) were the two main sources of information for this historical overview.

12Leon Dostert was the person at the origin of the project, which he imagined after attending the first
conference on Mechanical Translation in 1952 (Reynolds, 1952).
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Garvin and from IBM, Cuthbert Hurd and Peter Sherida.

Nowadays however, the Georgetown event is often described as having be held too early

in regards to the advancements of the Machine Translation field at that time, with a sys-

tem fine-tuned and doctored to work on a very specific set of sentences from organic

chemistry (Hutchins, 2004). It led to a frenzy of researches and funding that eventu-

ally finished on a disappointment with the ALPAC report of 1966, with its publication

dramatically diminishing the funding for Machine Translation researches. It is a good

example of the necessity to take advancement in the fields of NLP with caution, as good

results on a specific task can not always be generalised.

Some more years after the Georgetown experiment, Noam Chomsky published his rev-

olutionary book "Syntactic Structures" (Chomsky, 1957) (then followed by his compli-

mentary work, "Aspects of the Theory of Syntax" (Chomsky, 1965)), in which he argues

for the decoupling of the study of syntax and semantic in Linguistics. Using the two

sentences "Colorless green ideas sleep furiously" and "Furiously sleep ideas green col-

orless" as an example, he argues that although both are semantically nonsensical, the

former is grammatically (i.e. syntactically) sound. He then goes on to describe a fully

formal approach to the structure of languages, arguing that it can be understood in terms

of a set of rules that generate all possible sentences of a given language. In order to sup-

port his theory, Chomsky introduced several key concepts, including the idea of a "deep

structure" that underlies the surface structure of a sentence, and the concept of a "trans-

formational rule" that allows for the manipulation of deep structures to create different

surface structures. Syntactic Structures had a major impact on the field of linguistics,

and is the origin of many further NLP researches, including but not limited to the use of

formal systems to understand and generate natural language.

After Chomsky came a number of additional researches using his theory of formal lin-

guistics in the form of handcrafted rule-based systems as the core of their research.

Some notable examples are ELIZA (1964) and PARRY (1972) in the field of psychother-

apy, SHRDLU (1970) understanding logical relations in a simple simulated world, or

LIFER / LADDER (1978) used as a natural language interface with a database about

the U.S. Navy Ships. Moreover, a number of datasets were made publicly available,

making natural language easier to study with the first (and one of the most known) of

those dataset being the Brown corpus of Standard American English (Kučera & Francis,

1963-64).

3.1.1.2 The Advent of statistical Models

Starting from the late 1980s, change began coursing throughout the NLP community.

The research focus partly shifted from manually tuned models based on Chomsky’s
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formal theory of language and formal logic to statistical models. Instead of basing their

predictions on exhaustive, explicit grammatical rules and logical relations described

and hard-written in the systems by humans, those new models used statistical methods

to "learn" natural languages from existing data. One of the earliest example of such a

model is presented in Benello, Mackie, and Anderson (1989), in which a simple artificial

neural network of 560 neurons is used to disambiguate the syntactic category of words

in sentences. Most of the models developed during this period, however, did not use

ANN and preferred the more classical statistical methods described in subsection 2.2.1.

This can be explained because ANN usually need more data and - more importantly -

more computing power to be trained, which were rare resources at that time.

This new focus, which essentially joined the fields of Machine Learning and NLP,

emerged for a few reasons (Manning, 2000). First of all, natural languages are by na-

ture ambiguous and processing them require word knowledge that is not part of the input

text itself: statistical models can thus better model those ambiguities and external word

knowledge than formal grammar based models, which are rigid and mostly focused on

the structure of sentences. Moreover, probabilistic models can take into account the

variations of language between communities or time periods much more easily than

logic, formal grammar based models. Finally, using formal grammar as the main way

to process natural languages can also be problematic because the rules of grammar it-

self are often bent by people, be it for rhetorical purposes, regional dialects or simply

because of mistakes13.

By using ML instead of rule-based models, the research on NLP saw rapidly improving

results during the 1990s and 2000s. In 1987, Sondheimer described the "rate of progress

in natural language processing [to have] been disappointing to many, including [him-

self]" because of "overblown expectations" both from the press and the NLP community

itself but change for the better was soon to happen. A good example is the field of Ma-

chine Translation, which saw such improving results (Hutchins, 2007) with the advent

of SMT: Statistical Machine Translation. One of the first fully functional example is

Candide, from Berger et al. (1994), a translation system from French to English based

solely on statistical methods. At the time, Candide beat the previous state of the art

both on fluency and adequacy of translations14 for fully automatic translations while

humans aided by its assistant mode obtained better results on both measurements than

those that translated without the machine’s help. Another prominent example are web

search engines (Seymour, Frantsvog, & Kumar, 2011), with the introduction in 1998 by
13For example, the sentence "You coming?" (and other variations) is grammatically incorrect in English,

but is still often used colloquially in some social and geographic circles.
14Fluency stands for the syntactic quality of the translation: is the translation a proper sentence in the

target language? Adequacy stands for the semantic quality of the translation: is the translation ade-
quately conveying all the meaning of the source sentence?
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Google of the PageRank statistical method which allowed users to see a list of results

ranked by relevance and importance of the web pages rather than a rank purely based on

the number of occurrences of the search words in the target pages like its predecessors.

The development of PageRank allowed users to navigate on and search the ever growing

Internet much more easily and improved versions of it are nowadays used by all search

engines.

3.1.1.3 The Resurgence of ANN

The transition towards classical ML models from purely rule-based models allowed

NLP processes to reach new heights and finally fulfill more and more practical use cases.

It was, however, not its latest development: over the last two decades, a small revolution

happened in the field of NLP (and more generally, for the whole of ML researches) with

the emergence of efficient and usable ANN (Kamath, Liu, & Whitaker, 2019). ANN

and even more so DNN proved particularly effective at NLP because of their ability

to process a large amount of data and extract statistically significant properties out of

it, much more so than classical Machine Learning methods - at the cost however of

more difficult and computationally intensive training. For NLP in particular, such data

is often readily accessible through existing large corpora like COCA (Davies, 2008) or

the aforementioned Brown Corpus (Kučera & Francis, 1963-64) and in some cases may

even be collected directly from the Internet.

This neural networks resurgence started twenty years ago (Kamath et al., 2019), with

the work of Bengio, Ducharme, and Vincent (2000) introducing an ANN capable of

processing words into a dense vector representation, and only grew stronger since. Here

follows a non-exhaustive list of notable milestones achieved thanks to ANN and DNN

since Bengio et al.:

• Collobert and Weston (2008) and Collobert et al. (2011), introducing the very ef-

ficient concepts of pre-training and multitask training, showing that several NLP

tasks could be achieved with better results using neural networks instead of clas-

sical ML methods.

• Mikolov, Sutskever, Chen, Corrado, and Dean (2013), proposing a highly im-

proved computation of Bengio et al.’s word representation.

• Kalchbrenner, Grefenstette, and Blunsom (2014) which improved the capacities

of locally context-sensitive NLP tasks by introducing an improved Convolutional

Neural Network architecture.

• Sutskever, Vinyals, and Le (2014) which presented the concept of sequence to

sequence learning using Long Short-Term Memory (a subset of Recurrent Neural

Networks).
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In particular, this latter concept was then introduced to machine translation softwares,

dramatically improving the quality of their output and bringing them closer to the level

of human specialists. Widely known examples of this are the modern version of Google

Translate or DeepL.

3.1.2 Nowadays: Transformers, or Leveraging Attention Mechanisms

for NLP

The progress described in the last section are not, however, the current state of the art for

most NLP tasks: this would instead be the transformer architecture for deep learning,

introduced by Vaswani et al. in 2017. Although this architecture still has limitations and

growing pains as shown in Chernyavskiy, Ilvovsky, and Nakov (2021), it has sometimes

been compared to the revolution that was ImageNet for the field of Computer Vision

in 2009. The main technical points and advantages of transformers are described in

Section 2.2.4.

However, the simple introduction of transformers does not entirely explain in and of

itself how they became so widely and quickly used: the work of Wolf et al. (2020b)

greatly helped them reach the NLP community by introducing "Transformers", an open-

source Python library by the Hugging Face community. This library assembles, under a

unified API and in a fully open way15, almost all non-proprietary transformers architec-

ture including its biggest names like BERT or GPT. The unified API in particular allows

to easily and quickly use, train or adapt any transformer architecture without having to

deal directly with PyTorch and TensorFlow16 while still leaving the possibility of fine-

tuning parameters and architecture as much as necessary to the more advanced users.

A particularly noteworthy example of transformer is the GPT (Generative Pre-trained

Transformers) family of transformers from OpenAI. Building upon the work of Vaswani

et al., they created several versions of transformers over the years, each offering better

results than the previous ones. In particular, their chatbot ChatGPT (OpenAI, 2022)

based on GPT-3 made the headlines in late 2022 for its remarkable ability to converse

with people on a wide variety of topics, in an English which is almost indistinguishable

from human conversations.

3.2 "The Case of Chiasmus"

Chiasmi in general, and antimetaboles more specifically, only began drawing attention

from the research community a decade and a half ago. As such, the background in this
15Anyone in the community can propose a new transformer or rate and comment on existing architec-

tures.
16The two biggest library for direct ANN building and training in Python.
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subject is still relatively small with only a handful of names having made significant

contributions. These researchers have however opened the gates and prepared the field

for all subsequent works, and their contribution should not be understated.

3.2.1 The first Extensive Researches

The very first research we found that tried to algorithmically detect a given type of chi-

asmus was the work from Gawryjolek (2009), fourteen years ago. The subject of this

thesis was the automated annotation and visualisation of rhetoric figures, and one such

figure was the antimetabole. In a brief section of his work, Gawryjolek describes a

simple algorithm (Algorithm 3.2, p. 26) to detect the most basic antimetabole: the one

where two or more exact words would be repeated in an inverse order. As described

by Gawryjolek himself, this algorithm has two main flaws: it "produces a lot of an-

timetaboles that are not necessarily important from the rhetorical point of view" (i.e.

non-salient antimetabole) since it detects all inverse repetition of words, and "[it does]

not look at different forms of a word, but only at repetitions of exactly the same words."

which means a sentence such as Example 5 below would not be detected. Gawryjolek

thus proposed that a human should go over the algorithm’s results for annotation pur-

poses for now while additional work would have to be done to make the computer

detection able to separate salient antimetabole from non-salient ones.

• (5) To be kissed by a fool is stupid; To be fooled by a kiss is worse.17

Building upon Gawryjolek’s idea of simple, deterministic algorithms then came the

work of Hromada (2011) and Dubremetz (2013) (in French). Hromada proposed PERL

Regular Expressions as a mean to detect chiasmus, looking for the specific case of re-

peating words with a middle pivot (i.e. sentence structured as follow: "Wa Wpivot Wb ...

Wb Wpivot Wa") whereas Dubremetz decided instead to improve on Gawryjolek’s algo-

rithm, adding several more filters regarding punctuation and stopwords to improve the

precision of the algorithm dramatically (From 2% to 72%) while keeping a similar re-

call.

Thus come the serie of articles written by Marie Dubremetz and Joakim Nivres six

years after Gawryjolek’s thesis, with the first paper being titled "Rhetorical Figure De-

tection: the Case of Chiasmus"18 (Dubremetz & Nivre, 2015). In this first work of a

serie of three, they studied how manually fine-tuned statistical methods (they could not

use proper ML techniques at that time due to the lack of data) could be used to sep-

17Ambrose Redmoon.
18Part of this title was used as title for this section of the thesis to honor their work.
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arate salient antimetaboles from uninteresting ones19. Moreover, they argued that the

saliency of chiasmi should be seen as a ranking problem instead of classification one:

according to them, we cannot say with full certainty that a criss-cross pattern is or is not

a salient chiasmus but simply that a chiasmus is more salient than some others. They

thus decided for a two steps process as their methodology: first, an algorithm similar

to Gawryjolek’s extract any possible antimetabole candidates by looking for criss-cross

patterns of lemmata, then those candidates are ranked by a manually tuned standard

linear ranking model using shallow features. Doing so, they obtained better results than

the previous state of the art by Hromada by a few points of percentage both in precision

and recall. Furthermore, they also used their new model to detect a number of Chiasmi

in the Europarl dataset20, offering more data for future works.

One year after, they wrote a new article on the same subject (Dubremetz & Nivre, 2016).

While building upon the previous work by reusing the same kind of ranking model and

general methodology, this paper presented one major improvement: the addition of

a new set of syntactically deep features based on part-of-speech (PoS) tagging, adding

depth to the shallow model of 2015. This new model saw a very noticeable improvement

in its result: using the average precision metric and compared to the state of the art from

Dubremetz and Nivre (2015), its results were improved by 25 points (68% vs 43%)

on the Europarl corpus and by 17 points (70% vs 53%) on the complete anthology

of the Sherlock Holmes serie by Arthur Conan Doyle, a literary genre which it never

encountered before. However, they note that due to the very low number of results,

those improvements can not be taken as an absolute proof of a better models but may

also be statistical flukes. Finally, like with their previous article, they compiled all new

chiasmi found with their model in a single place, paving the way with enough data for

the first ML methods soon after.

The final article in this academic serie was "Machine Learning for Rhetorical Figure

Detection: More Chiasmus with Less Annotation" (Dubremetz & Nivre, 2017). As its

title suggests, the main improvement they proposed with this work is the introduction of

ML methods to tune their ranking model - a feat made possible thanks to the data they

collected with their previous two experiments. To be precise, they used a binary logistic

regression classifier with the same features as Dubremetz and Nivre (2016) and two

fold cross-validation (a Kernel SVM model was also tried and yielded similar results to

this classifier) and trained their model with the 31 instances annotated as "true" from

the previous works considered as positive examples, while keeping the same candidate

19Although their work only focus on antimetaboles, they refer to them with the broader term chiasmus
instead. Moreover, what we call "salient antimetabole" is referred in their articles as "true chiasmus",
with the opposite being "random criss-cross patterns".

20A corpus of debates from the European Parliament, https://www.statmt.org/europarl/.
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Figure 5: Dubremetz and Nivre’s textual and syntactic features used in the models pre-
sented in their 2016 and 2017 articles, from Dubremetz and Nivre (2017).

extractor as Dubremetz and Nivre (2015). Using Machine Learning, they thus improved

the average precision by 3.1 points (70.8% vs 67.7%) over their previous best result from

2016.

The final set of features, used in their two last articles (Dubremetz & Nivre, 2016, 2017)

can be seen in Figure 5. Their first article (Dubremetz & Nivre, 2015) used the same

list of features except for the "Syntactic Features" category.

3.2.2 Using Semantic Features: the current State of the Art in Chiasmus

Detection

The latest improvement to chiasmi detection came from Schneider et al. (2021): al-

though heavily based on Dubremetz and Nivre (2017), their work was different on few

key points. First of all, and most notably, they broadened the scope of the detection by

focusing not only on antimetaboles but on general semantic chiasmi: in practice, they
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Feature Description
Lexical Features

EqualLemmaWaW ′a True if the lemmata of Wa and W ′a are equal.
EqualLemmaWaWb Same for Wa and Wb.
EqualLemmaWaW ′b Same for Wa and W ′b.
EqualLemmaWbW ′a Same for Wb and W ′a.
EqualLemmaWbW ′b Same for Wb and W ′b.
EqualLemmaW ′aW ′b Same for W ′a and W ′b.

Embedding Features
CosineSimilarityWaW ′a The cosine similarity between Wa and W ′a.
CosineSimilarityWaWb Same between Wa and Wb.
CosineSimilarityWaW ′b Same between Wa and W ′b.
CosineSimilarityWbW ′a Same between Wb and W ′a.
CosineSimilarityWbW ′b Same between Wb and W ′b.
CosineSimilarityW ′aW ′b Same between W ′a and W ′b.

Figure 6: The additional features from Schneider et al. (2021), added on top of the pre-
viously existing features presented from Dubremetz and Nivre (2017).

aimed to detect any rhetorically salient criss-cross patterns of semantically connected

words (be it because similar or opposite meanings) and not only inverse repetitions of

lemmata. To support this shift in goals, they had to change the way the extraction of

candidates was done: they therefore chose to look for criss-cross patterns of PoS tags

instead of those of lemmata. Finally, they added two sets of features to the features from

Dubremetz and Nivre: a set of lexical features to compensate for the loss of the intrinsic

equality of lemmata, and a set of word embedding features to model the semantic rela-

tions between the clauses of their chiasmi candidates. Those additional features can be

seen in Figure 6.

Apart from those changes, their process and models stay the same: they first extract

any possible chiasmi candidates before feeding them to their candidate ranking model

- here again a logistic regression classifier. In particular, their model was trained and

validated using five fold cross-validation twice: once on German data, using a fully

annotated compilation of four different works from the author Friedrich Schiller and

once on English data, using the dataset from Dubremetz and Nivre (2017).

Using these new methods, they were able to improve upon the work of Dubremetz and

Nivre (2017) (which will be called "Dubremetz’s method" from hereon). Figure 7 shows

that: we can see that their method had similar results as Dubremetz and Nivre’s on the

English dataset made only of antimetaboles, but that they beat it on the German dataset

on all fronts. Even for antimetabole, their best results was an average precision of

49% whereas Dubremetz’s model only has an average precision of 21%. Interestingly,

those results tend to show that using lexical features is either neutral or damaging to
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Figure 7: Results from Schneider et al. (2021) on four Schiller dramas and on
Dubremetz and Nivre’s dataset.
D = Dubremetz features ; L = Lexical Features ; E = Embedding features.

the performances of their method, as the model with Dubremetz’s and Embedding fea-

tures was either better (to detect non-antimetabole chiasmi) or almost equal (to detect

antimetabole or all chiasmi combined) compared to the models with lexical features.

The differences are however particularly small and well within the margin of error, and

nothing conclusive can be extracted from this specificity.

Finally, it is important to note that while their method offers much better results in

those experiments than the one from Dubremetz and Nivre (2017), a key point must be

considered: this study was conduced mostly with German texts, whereas Dubremetz and

Nivre conduced theirs in English and while the comparison is interesting, this difference

needs to be taken into account when evaluating the final results. Moreover, their method

did miss some prototypically salient before even reaching the ranking phase: because it

was founded on inverse repetitions of PoS tags, their candidate extraction phase missed

chiasmi and antimetabole were the words did not reverse their part of speech. This was

not the case with Dubremetz and Nivre’s extraction, as it focused only on lemmata.

Such an example of a missed chiasmi can be seen in Example 5, where the PoS tags of

the chiastic clauses show a parallelism instead: "Noun ... Verb ... Noun ... Verb".

3.3 An Addendum on Linguistics

Although this thesis focuses mainly on the Computer part of "Computer Linguistics",

the Linguistics part should not be entirely ignored. This section thus focuses on a few

researches and arguments from linguistic works that can help better define the subject

of rhetorical figures as a NLP problem.

In Harris et al. (2018), the authors combines a detailed meta-study on the researches

on rhetorical figures in the field of computer linguistics and a proposition for a gener-

alist annotation scheme of such rhetorical figures. They also adequately argue that the
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question, when working with rhetorical figures such as antimetaboles, is not so much

about detecting true antimetabole from false ones but rather to detect those which have

a rhetorical purpose from those which do not and are only incidentally chiastic21. This

is the reason why this thesis is titled "Detecting Salient Antimetaboles" and not simply

"Detecting Antimetaboles": the second one would need an algorithm only as simple as

Gawryjolek (2009)’s.

It is also interesting to note that the researches that have been done on rhetorical figures

from a linguistic point of view can be useful for those trying to solve NLP problems,

especially those trying to comprehensively organise and define them. A good example

of such is Mitrović, O’Reilly, Mladenović, and Handschuh (2017), in which the authors

propose an ontology of rhetorical figures. This ontology could then be useful when

using machine to detect those figures: a software could look at any given text, compare

it to the rules present in the ontology, and mark as a possible rhetorical device those that

follow all the necessary rules.

A last but quite important point stemming from linguistic researches, present in both

Harris et al. and Mitrović et al. (2017), is the argument that a complete work on the

subject should not only try to automatically detect rhetorically salient figures but also

train or tune models to understand their rhetorical purpose efficiently. We consider it a

particularly important step to take for the field of Computer Linguistics, but we were

not able to take it ourselves within this thesis due to a lack of time.

However, this point appeared to us important enough to share it with any computational

linguists reading this work, in order to prompt them to think about this important "ques-

tion of functions", a question whose answer could further the understanding of natural

languages by machines.

21This idea extends to most rhetorical figures: for example, an anaphora is always an anaphora but not
all of them have a rhetorical purpose.
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4 Methodology
As stated before, this thesis’s goal was to investigate the usefulness of Deep Learning

to detect antimetabole. However, several intermediary steps were taken to reach this

point and this chapter therefore aims to describe the methodology used throughout the

last year for this work. We will begin by describing the preliminary researches which

we conducted, before talking about a newly built chiasmus candidate extraction tool and

finally the most recent developments: proper data gathering and collation, and the usage

of transfer learning to train a transformer model.

It is important to note that we decided to focus on the detection of salient antimetaboles

only in the later part of the thesis, and a lot of the work during the first half of it has

been done with the broader task of detecting salient chiasmi22 in mind. This explains

some of the decisions we took during our intermediary work.

4.1 Preliminary Researches

The early stages of this thesis were conducted with Yohan Meyer and were focused most

of all on academic researches and understanding of the general subject: we thus began

with the three articles from Dubremetz and Nivre described in Section 3.2.1, as they are

the foundation of the modern researches on chiasmi detection using statistical models

and machine learning. More specifically, our efforts during this period were threefold:

1. To understand Dubremetz and Nivre’s work to the best of our abilities and there-

fore spent time learning about the techniques they used and studying their results

year on year.

2. To emulate the experimental part of their latest article to use it as a possible basis

for future work, i.e. our work.

3. To collect the data they used to form the foundation of a "Chiasmus Dataset".

The first goal was mostly done through personal academic researches, and was fulfilled

without any major hurdle. The second and third one needed inputs from Dubremetz and

Nivre, and we hence quickly resolved to contact them to ask for both their code and

their dataset, a request to which they promptly answered positively. We were thus able

to save their dataset as a foundation for more data gathering.

However, even after obtaining the code they used in their researches, we were unable

to properly run it: the code base had problems running in a modern python environ-

ment, since it was written in Python 2. This version of the language was indeed sunset

22More precisely, both semantic chiasmi and lexical chiasmi.
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on January 1st, 2020 which makes it hard to properly work on softwares written with

it. Consequently, we decided not to try further and instead focus on other sources for

possible implementations.

4.2 Building an Extraction Software for Chiasmi Candidates

Following our work focused on the Dubremetz and Nivre’s articles, we turned towards

Schneider et al. (2021) as inspiration. As explained in Section 3.2.2, we consider it

to be the current state of the art in chiasmus detection despite some weaknesses in

their methods. Recognising that detecting candidates using PoS tagging misses some

important chiasmi, we then decided to build our own candidate extraction tool using

ideas both from Dubremetz and Nivre and Schneider et al..

First of all, we followed their example and decided to look for candidates using a sliding

window of thirty words. Almost all chiasmi are built with clauses within thirty words of

each other, and those who do not fit within this limitation then tend to have a wide dis-

tance between their clauses (for example, a chiasmi whose first half is the first sentence

of a book and the second half, its last sentence). A theoretically perfect algorithm would

be able to look at any and all possible word combinations of its input, but this 30-words

window has been shown to be a good trade-off between computational power and high

detection rate by previous researches. Furthermore, we also needed to tokenise the doc-

ument, associating to each words their lemmas, PoS and positions. To do so, we chose

to use the Stanza pipeline23 (Qi et al., 2020) because of its completeness, effectiveness

and efficiency when working on English documents.

With the sliding window fixed to thirty and the document properly parsed, we turned

ourselves to the detection process itself. As mentioned above, we could not solely

use PoS inversion but neither could we simply use lemmata inversion like Dubremetz

and Nivre, as we were looking for general chiasmi at this stage of the thesis. Our

first decision was therefore to let go of PoS tagging as a detection method because

the very high number of candidates it produces would highly slow down the entire

detection pipeline. We then decided to use a combined approach: on one hand, our tool

would look for words with the same lemmata like Dubremetz and Nivre to make sure

we would not miss any possible antimetabole, while on the other hand, we would use

word embedding to look for combination of either synonyms or antonyms as possible

candidates.

Word embedding is a method that is used to project words as vectors in a high-dimensional

space using a DNN. In this space, the angle and distance between the words’ vectors is

23https://stanfordnlp.github.io/stanza/tokenize.html
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Figure 8: A simplified visualisation of the core principles of word embedding: the dis-
tance between words is supposed to be representative of their distance in ac-
tual meaning. From Ruizendaal (2017).

supposed to represent - to a degree - the difference between their actual meanings (see

Figure 8 for a simplified visualisation of this property).

A particularly useful computation when manipulating word embedding is the "cosine

similarity": it takes two word embeddings as an input and output a number between

-1 and 1, depending on the similarity of their angles. A similarity score close to 1

means the vectors are almost overlapping and thus that the words have a similar mean-

ing according to the embedding model, whereas a score close to -1 means the vectors

are opposite to each other and have an equally opposite meaning. In our candidate ex-

traction algorithm, we therefore decided to consider any pair of words whose cosine

similarity scored above a certain threshold (synonyms) or below the same threshold in

the negatives (antonyms) as a possible chiastic pair for chiasmi candidates.

In our case, we opted for GloVe24 in its Common Crawl (48B) version as our embedding

software. We decided to use it because of its high result in other NLP tasks while being

easy to access and use directly thanks to the existence of several different pretrained

versions of it.

Algorithm 1 thus shows a simplified version of the core loop of our tool. Our actual

implementation25 is however more precise in one way that would have been too long to

show in a pseudocode algorithm: it also looks for nested chiasmus. Nested chiasmus are

the name we chose for chiastic figures with more than two pairs of words. An example

24https://nlp.stanford.edu/projects/glove/
25Available at https://github.com/YohanMeyer/ChiasmusExtractor.
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Algorithm 1 candidates_extraction( f : Tokenised File)
match_table: List of word pairs;
candidates: List of chiasmi candidates;
current_window: List of words; # Already containing the first thirty words of the
document.

for each new_word in f do
if not is_punctuation_or_stopword(new_word) then

for each old_word in current_window do
if old_word.lemma = new_word.lemma

or cos_similarity(old_word.emb, new_word.emb) > T HRESHOLD
or cos_similarity(old_word.emb, new_word.emb) < −T HRESHOLD

then
current_match← (old_word, new_word);
for each old_match in old_matches do

if old_match.w1.position > current_match.w1.position then
Append (current_match,old_matches) to candidates;

end if
end for
Append current_match to match_table;

end if
end for

end if
Append new_word to current_window;
Pop the oldest word from current_window;

end for
return candidates;

can be seen with Example 6 which is an antimetabole made of three different pairs of

words. One could argue that such candidates could be detected simply by detecting the

various smaller candidates that make them, but doing so would not take into account

the full rhetorical potency of those structures as such candidates would be considered

outside of their complete picture. By extracting them as a whole, it allows the processes

depending on the results of this extraction tool to take nested chiasmi into account if

they wish so.

• (6) Baby , you ’ve been so distant from me lately ... And lately , don’t even

want to call you baby .26

4.3 Constructing a Dataset

When the work on this thesis began, one of the main goal that was set was to improve

the quantity of the data available for chiasmus detection. To do so, we explored two

26Selena Gomez.
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different methods: manually compiling chiasmi from various sources and using a com-

bination of the candidate extraction tool described in the previous section and the current

state-of-the-art in chiasmi detection to extract more chiasmi from new sources.

4.3.1 Manually Gathering New Examples

To achieve the first part, we gathered chiasmi examples from previous articles in the

field (notably from articles published by Dubremetz and Nivre, Schneider et al., Harris

et al. and Gawryjolek), various internet websites - often dedicated to rhetorical figures at

large or chiasmi in particular - and one specific book: "Never let a fool kiss you or a kiss

fool you", by Dr. Mardy Grothe (2014). This book contains a large collection of chiasmi

and allowed us to collect a large amount of chiasmi of several types, from antimetaboles

to chiasmi playing on the pronunciation of words27 and after gathering all its examples

of chiasmi and filtering the uninteresting ones, it totaled to 507 examples of chiasmi

(either semantic chiasmi, phonetic chiasmi or lexical chiasmi i.e. antimetaboles).

4.3.2 Using a Semi-automated Pipeline to Extract more Examples from

Novel Sources

The other idea we had to expand the number of positive examples of chiasmi was to

use a similar method to that of Dubremetz and Nivre (2015, 2016): using existing mod-

els and processes to extract highly ranked candidates from new corpora. To do so, we

imagined a new architecture for a semi-automated pipeline: first, we would extract can-

didates from new corpora and literary sources; then, we would feed those candidates to

the model from Schneider et al. (2021) to rank them; the best ranked candidates would

then be manually annotated using the Doccano annotation tool (Nakayama, Kubo, Ka-

mura, Taniguchi, & Liang, 2018), giving from this point an already usable list of positive

(and negative) examples of chiasmi; finally, the positive examples of chiasmi would be

combined with the original input texts according to Harris et al. (2018)’s XML annota-

tion scheme, allowing for more context around the chiasmi themselves for the processes

that might use it. This whole pipeline can be visualised on Figure 9.

However, we were never able to fully bring this idea to life for three reasons. Two of

those were linked to our extraction tool: at the time of writing, its current version is

particularly slow due to a weakly optimised codebase and its results regarding anything

but pure antimetabole are particularly low (as will be further described and explained in

Chapter 5). The third reason is that we could access the model described in Schneider

27"A magician pulls rabbits out of hats. An experimental psychologist pulls habits out of rats" (Never let
a fool kiss you or a kiss fool you, Dr. Mardy Grothe (2014)) is a good example of such a chiasmus on
sounds rather than lemmata or meanings. We decided to call those phonetic chiasmi.
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Figure 9: The imagined chiasmi annotation pipeline to detect and annotate chiasmi from
novel sources (Meyer, 2023).

et al. (2021) relatively late in respect to the conduct of the whole thesis and that it

would have needed some adjustment to properly work on English texts. We still deeply

encourage future researches to look more into this possibility to highly enhance the

existing datasets.

We however still used our candidate extraction tool to extract a heap of antimetabole

candidates from a subset of the COCA corpus (Davies, 2008). As did Dubremetz and

Nivre, we consider those unknown and unannotated extracts to be negative by default,

because of the very low number of antimetaboles among all possible criss-cross patterns

in any natural language pieces.

4.3.3 The Resulting Corpus

Despite not being able to use the second method as we first wished, we were still able

to collect a vast number of chiasmi. Our corpus, fully available online28, contains 763
salient chiasmi, including 659 antimetaboles, 98 semantic chiasmi and 9 phonetic chi-

asmi. Moreover, it also contains 2720 non-salient antimetaboles text extract and 1388
random sentences or pair of sentences that were not analysed for any chiastic repetition.

This totals to 3463 examples of salient and non-salient chiasmi, and a total number of

examples of 4851.

28https://github.com/Dironiil/ChiasmusDatasets in the data subfolder.
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The previously most complete English public corpus regarding chiasmi, collected by

Dubremetz and Nivre (2016), contained 21 positive examples of antimetaboles against

our 659 positive examples of antimetaboles. We have hence improved the previous

state of the art in this regard by a factor of slightly over 30, which in turn opens up a

number of possibilities for future researches on the subject - in particular those using

more data-hungry ML methods like Deep Learning.

4.4 Using Deep Learning to Detect Antimetaboles

With a large collection of data now available, the next step of the thesis was to put it to

use. Before any proper work, two important decisions had to be taken. The first was

motivated by a review of the literature presented in Section 3.2 which only contains

classical statistical and ML methods to detect chiasmi and thus made us decide to use a

novel approach for this problem: the recent but particularly effective transformer tech-

nology, enhanced by transfer learning. This choice was made possible in part thanks

to the heap of data we collected, as transformers are much more data hungry than the

classical ML methods used by Dubremetz and Nivre (2017) and Schneider et al. (2021).

The second decision was taken in tandem with the first one: because of this entirely

novel approach and because of the high amount of data transformers need to be trained,

we decided to focus this thesis’s work entirely on antimetaboles instead of looking for

chiasmi at large.

4.4.1 Choosing the models

After choosing to use transformers came the question of which specific model to use.

Each individual models have strength and weaknesses, coming both from the details of

their architecture and the quality and quantity of data they were pretrained on. As

of November 2022, the three main transformer architectures available to the public

are GPTNeo29 (Black, Leo, Wang, Leahy, & Biderman, 2021) building upon Ope-

nAI’s GPT2 and taking inspirations from their GPT3 architecture; Bloom30 (Scao et

al., 2022), similar in architecture to GPT3 but created in an open way by a community

of researchers from the BigScience workshop and trained on a multilingual dataset; and

BERT31 (Kenton & Toutanova, 2019), the first widely known transformer architecture.

As the GPT architecture has a large history of effectiveness for several NLP tasks, we

decided to use GPTNeo for our initial experiments, before expanding a series of exper-

iments to the more recent Bloom architecture in order to compare both on several tasks

29Documentation page: https://huggingface.co/docs/transformers/model_doc/gpt_neo
30Documentation page: https://huggingface.co/docs/transformers/model_doc/bloom
31Documentation page: https://huggingface.co/docs/transformers/model_doc/bert
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related to the detection of salient antimetaboles. Another important choice we had to

make was the size of the models: the more parameters a model has, the better its results

would usually be at the cost of a more data and computing resources hungry training

process: in their most common versions, GPTNeo and Bloom respectively have 1.3 bil-

lions ("GPTNeo 1.3B") parameters and 176 billions ("Bloom 176B") parameters. Our

first experiments thus tried to use GPTNeo 1.3B but the architecture was too heavy to

be trained with the available computing resources and data, and we downgraded to the

much smaller 160 millions parameters version: "GPTNeo 125M". Knowing the trou-

bles we had to train GPTNeo 1.3B, we immediately decided to use the smallest available

version of Bloom with 560 millions parameters: "Bloom 560M".

4.4.2 Choosing and Preparing the Data

The models now chosen, the next decision was that of the datasets. The first decision

we took was to use all the salient antimetaboles from the dataset described in Sec-

tion 4.3.3 as positive examples, except for the antimetabole from Dubremetz and Nivre

(2016)’s appendices. This decision was taken so that our models could be tested against

those 21 specific examples and its performances better compared to that of Dubremetz

and Nivre’s models. As negative examples, we first wanted to use the non-salient an-

timetaboles extracted by our candidate extraction tool. However, those extracts were

not proper sentences as the tool would often cut sentences in the middle while extract-

ing candidates and were thus too different from the positive examples to be properly

used as negative examples. We therefore chose our initial set of negative examples to

be random sentences and pair of sentences extracted from three different corpora from

the data.world website: abstracts from articles prepublished on Arxiv (Friedman, 2020),

English jokes from various sources32 (Pungas, 2017) and UN Speeches (Malina, 2017).

This data was then shuffled before being split into training, validation and test sub-

sets. We chose an 80% training, 10% validation and 10% testing split, as we had a

large enough amount of data to allow for a smaller split for validation and test purposes

whereas the training process of transformers wants for as much data as possible. Once

the data was split, the next step was to preprocess it to make it digest for the models

with the most important part being to tokenise and pad it accordingly. This tokenisation

process converts one single text input into a sequence of "tokens", i.e. integer values,

with each token usually representing one word or punctuation symbol in the original

text. Figure 10 is a visual representation of the steps taken to tokenise a text into proper

input for transformer models.

32To be precise, the jokes were scratched from www.reddit.com/r/jokes/,
www.stupidstuff.org/jokes/ (nowadays unavailable) and www.wocka.com.
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Figure 10: A visual explanation of the tokenisation process which transforms raw text
into inputs usable by transformer models. <BOS> and <EOS> respectively
mean "Beginning Of Sentence" and "End Of Sentence" and are used to signal
the beginning and end of a sequence.

4.4.3 Setting up the training and testing processes

The training and testing pipeline of our models was setup in a Google Colab notebook33

using cloud GPU computing resources. For all experiments, the training was done over

three epochs with a batch size of 8, gradient optimisation happening every 4 batches

and a mixed-precision training process. The three-epochs-training was motivated by

the fast convergence of validation loss, while all other parameters were motivated by

the optimisation of the process in respect to the computing resources we had. With

these parameters and the data described above, GPTNeo 125M took around 3 minutes

to train. The model was finally validated in two steps: first on the 10 remaining percent

from the dataset, then on the 21 antimetaboles from Dubremetz and Nivre (2016).

All the models were saved after their use and are freely available online for test, training

or comparison purposes34.

4.4.4 Additional experiments

After the initial set of trials, we opted to do a few additional experiments (the codebase

for those is on the same Google Colab notebook as the pipeline described above). These
33This notebook is available here: https://colab.research.google.com/drive/

1pP_y27gBhjB7wvdxtwGz7BCC8lrrtGCK?usp=sharing
34The models are available here: https://drive.google.com/drive/folders/

1yWvkeF3p4Cgq1A3EamZ50FYrHBP4eDoJ?usp=sharing
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Algorithm 2 full_text_experiments(novel: Raw text, model: Classification model)
parsed_novel← tokenize(novel);
candidates← candidates_extraction(parsed_novel);

positive_candidates← [];
for each candidate in candidates do

if model(candidate).label = "Antimetabole" then
Append candidate to positive_candidates;

end if
end for

true_positives, f alse_positives← [], [];
for each positive_candidate in positive_candidates do

if human_annotation(positive_candidate).label = "Antimetabole" then
Append positive_candidate to true_positives;

else
Append positive_candidate to f alse_positives;

end if
end for

precision← true_positives.length / positive_candidate.length;
return true_positives, f alse_positives, precision;

were divided into three parts:

• First, we used our newly trained GPTNeo 125M model to look for antimetabole

in the full text of "Frankenstein, or the modern Prometheus" by Mary Shelley35.

This was done in order to evaluate the results of our model on out-of-genre data.

• We then used the additional data (positive and negative) from this "Frankenstein

experiment" to train a new GPTNeo 125M model from scratch. It was then tested

both on the regular test data described in the previous section and on the full text

of "Dracula" by Bram Stocker36. This experiment would allow us to evaluate if

the added data from Frankenstein would improve the results of GPTNeo 125M

on another literary novel.

• Finally, we trained a Bloom 560M model using the original dataset and the addi-

tional data from the "Frankenstein experiment" and tested it on the regular testing

data and "Dracula"’s full text, in order to compare its performance to the GPTNeo

125M from the previous experiment.

As our transformers are waiting for sentences, we had to preprocess the full texts of both

Frankenstein and Dracula into usable extracts. Consequently, we first parsed them into

35Full text available at https://www.gutenberg.org/files/84/84-h/84-h.htm.
36Full text available at https://www.gutenberg.org/files/345/345-h/345-h.htm.
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sentences and lemmata using the Stanza tokenizer. We then used an algorithm similar

to Algorithm 1 to look for antimetabole candidates, before feeding them to our models.

Finally, the positive results of that classification were manually annotated and metrics

were compiled. Algorithm 2 is a pseudo-code visualisation of this process.

It is important to note that the candidate extraction algorithm we used in this process

differs from Algorithm 1 in a three notable ways: we did not use embedding at all and

only looked for inverse repetitions of lemmata, we limited the search to take place only

within one sentence at a time, and we outputed full sentences instead of text extracts

centered on the chiasmi candidates. The reasoning behind those decisions is that our

models were trained to look for antimetaboles on inputs formatted as proper sentences

(or more rarely a few sentences), and we wished to obtain similar inputs during those

additional experiments. Our base candidate extraction algorithm detected 576 sentences

with a chiastic structure in Frankenstein and 1426 within Dracula.
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5 Results
This chapter will be dedicated to the presentation of the results obtained by the various

experiments described in the previous chapter. We will first talk about the candidate

extraction tools we developed, before focusing on the effectiveness of the transformer

models for the task. The last part will focus on the final dataset gathered throughout the

thesis, including additional positive and negative examples from the "Frankenstein" and

"Dracula" experiments.

5.1 Automatic Candidate Extraction
As described above, we created two different chiasmi candidates tools. The first one,

presented in Section 4.2, aimed to look for both antimetaboles and lexical chiasmi

through the use of embedding and to be used within a larger pipeline for annotation

purposes. The second one was described in Section 4.4.4 and was much simpler, simply

looking for sentences with at least one antimetabole pattern in a given text.

As those tools are made with the purpose of parsing the inputs and weeding out any

impossible candidates, their precision in regards to salient chiasmi is not particularly

important: any false positive would be processed by the models trained to detect salient

chiasmi, and categorized consequently. Their recall, however, is extremely important:

any chiasmi that is not detected during the initial process will not be categorized by the

models and hence entirely ignored.

In the case of antimetabole, this recall is easy to theorise: as long as the antimetabole

is not made of stopwords37, over a window longer than thirty tokens or, in the case of

the simplified tool over several sentences, then almost all salient antimetabole should be

detected by the tools. However, even the most effective lemmatisation techniques have

mishaps in practice, thus attributing the wrong lemmata to words with this problem pre-

venting the detection of up to 10% of the antimetaboles of our whole dataset - although

highly dependent of the files fed to it. The recall of our tool regarding semantic chiasmi

is even harder to approach: our main idea was to detect them using word embedding

and consider as a chiasmi any criss-cross patterns of words whose cosine similarity are

above (or below the negative equivalent of) a lax threshold, and this method is subject

to high performance variability depending on the embedding and comparison methods

used.

To measure the general performance of our main candidate extraction tool, we launched

it without and with the embedding detection method (using a 0.75 cosine similarity
37With our limited list of stopwords compared to even Dubremetz and Nivre (2017), very few an-

timetaboles would not be detected. One notable exception however still is one of the most known
antimetabole: "One for all, all for one".
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Method Candidates Salient antimetaboles Salient semantic chiasmi
Lemmata only 43 11 (100%) 0 (0%)

Lemmata + Embedding 279 11 (100%) 0 (0%)

Figure 11: The number of candidates, salient antimetaboles and salient semantic chi-
asmi extracted when using the chiasmi candidate extraction tool described
in Section 4.2. The input text consisted of 11 salient antimetaboles and 6
salient semantic chiasmi.

threshold) on a small text file composed of 17 examples of salient chiasmi, with 11

salient antimetaboles and 6 salient chiasmi. The results of this experiment are available

in Figure 11: as very clearly shown, our tool is entirely unable to detect any of the

six semantic chiasmi even with a quite lax 0.75 threshold. In the meantime, it adds

236 examples of nonsalient chiasmi to to the candidate pool, all of which we know are

negative in this case. Using embedding to detect salient chiasmi would thus mostly slow

down the whole pipeline while bringing barely any positive results, if any.

• (7) He went to the country , to the town went she .

• (8) Even this relation in its simplicity is a personification of things and a

reification of persons .38

• (9) It was not so much a matter of having power to do a thing as it was having

the power to stop things from being done to you.

• (10) Baby, you ’ve been so distant from me lately. And lately, don’t even want
to call you baby.39

Examples 7 and 8 are two examples of salient semantic chiasmi it does not detect,

whereas Examples 7 and 8 are two nonsalient "chiasmi" it extracted as candidates. This

38Karl Marx.
39Selena Gomez.

Word #1 Word #2 Cosine Similarity
he she 0.870
me want 0.757

much things 0.752
victory defeat 0.747
country town 0.609

tree computer 0.327
personification persons 0.076

Figure 12: Pairs of words and their cosine similarity according to GloVe in its Common
Crawl (48B) format, from highest to lowest.
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problem is due to one simple cause: the embedding characteristics we used were too

volatile, with similar words often having a relatively low cosine similarity (or opposite

words having a low dissimilarity) while words with no clear links between them some-

times rated as particularly similar or dissimilar. This is shown in Figure 12, where we

can see that similarity scores are only loosely tied to the actual closeness in meaning.

We can also see that depending on the threshold, some candidates may or may not make

the cute (for example, victory and defeat do not make the cut with our 0.75 threshold

but would have with a 0.7 threshold). However, even a much lower threshold would

have missed several candidates: it would need to be as low as 0.6 to detect Example 7,

and no threshold would have been able to detect Example 8 due to its quasi-zero cosine

similarity between personification and persons. This makes the current implementation

of our tool still unfit in respect to salient chiasmi extraction, as such a task should have

a recall close to 1 to be considered effective.

5.2 Deep Learning Models

This section will focus on the results of the different experiments described in Section

4.4. It will be separated in three parts: first, the results of GPTNeo 125M using our

original dataset; second, the results of our first model on novel data; third, the results of

a newly trained model using additional data gathered during the previous experiment;

fourth and finally, the results of Bloom 560M using the same data as the third experiment

for training and testing.

5.2.1 Original Experiment

As described above, our first experiment was to train, test and validate GPTNeo 125M

on our original dataset - bar the antimetaboles from Dubremetz and Nivre (2016) -, using

as negative examples random extracts from various corpora for a total of 638 positive

examples and 1388 negative examples. Once entirely trained and tested, the model was

then tested on 21 known positive examples, from the appendices of Dubremetz and

Nivre (2016). As this test step only contained positive examples, no precision could be

computed for this experiment (and thus, no F1 Score either).

The results of the model are visible in Figure 13. We can immediately notice that

its results in-dataset are excessively high, beating all previous state-of-the-art but fall

to a recall of only 81% with Dubremetz and Nivre (2016)’s antimetaboles (seventeen

correctly annotated out of twenty-one) as soon as we move out of the dataset. As seen

in the figure, this is still noticeably better than the previous state of the art regarding this
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Model Tested On Precision Recall F1 Score
GPTNeo 125M Regular Testing Split 98% 98% 98%
GPTNeo 125M Dubremetz’s Antimetaboles - 81% -

Dubremetz’s Dubremetz’s Antimetaboles - 69% -

Figure 13: The results of GPTNeo 125M trained on our original dataset bar the an-
timetaboles from Dubremetz and Nivre (2016), compared to the results of
Dubremetz and Nivre (2017).

Model Tested On Full
Precision

Partial
Precision

Partial
Recall

Partial
F1 Score

GPTNeo 125M Frankenstein 2.0% 4.5% 50% 8.3%

Figure 14: The results of our fine-tuned GPTNeo 125M on the text of Frankenstein. The
full precision is computed over the full 576 candidates, the partial metrics are
computed over 150 fully annotated candidates.

dataset, Dubremetz and Nivre (2017)40 but it is only one of the two important metrics

for those tasks, as precisions is just as important as recall.

5.2.2 Using our Model on New Data

As described in Section 4.4.4, the next experiment we conducted was to use our newly

trained GPTNeo 125M model on entirely novel data: the full text of Frankenstein, made

of around 75,000 words or 3374 sentences. Of this full text, we extracted 576 sentences

with at least one lexical criss-cross pattern and fed them to our model for classification.

This experiment allowed us to better measure its performances - including its precision

- on a numerous amount of data from a different genre.

Due to the high number of candidates, only the first 150 were manually annotated as

salient, allowing us to compute a partial recall over those first 150 candidates. Moreover,

all of the candidates classified as salient by the model were manually annotated as salient

or not, giving us access to the full precision over the entire dataset of our model. Out

of those, only two contained a chiastic pattern with some rhetorical saliency, which

are shown below - although Example 12 was considered close to borderline by the

annotators.

• (11) I paused, examining and analysing all the minutiae of causation, as exempli-

fied in the change from life to death , and death to life , until from the midst

of this darkness a sudden light broke in upon me.

• (12) She forgot even her own regret in her endeavours to make us forget .

40Schneider et al. (2021) obtained the same results as Dubremetz and Nivre (2017) regarding those
antimetaboles.
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The general results of this experiment are shown in Figure 14. As we can see, our

model’s precision on this new data is particularly low and its recall is only average - al-

though with only two positive examples from which the partial recall can be computed,

the results are not significant enough to draw any strong conclusion. Moreover, it is

interesting to note that out of the two positive examples, it only detected the least inter-

esting (Example 12) as salient while classifying the much more prototypical Example

11 as not salient.

5.2.3 Retraining a Model

The Frankenstein experiment brought to use a heap of new data in the form of 226

fully annotated examples41 (3 positive, 223 negative) and 350 unknown examples that

we considered as negative by default. To compare the results of our method when

adding data from a new genre, we decided to train a new GPTNeo 125M model using

exactly the same experimental setup as before - the only difference being the addition

of those 576 new examples to the dataset. We’ll call this new model GPTNeo 125M

"Frankenstein" , whereas the original model will be called GPT 125M Base. The results

of this experiment are visible in Figure 15.

As can be seen, those results are all worse than the original model’s results, and the recall

on Dubremetz and Nivre’s antimetaboles is even lower than their 2017 approach. The

most probable explanation is that the addition of new data to the training pool diluted the

abilities of the model because of the wildly different literary style between Frankenstein

and the other corpora, making it harder for the model to fall on any specificities of

positive and negative examples both.

A follow-up experiment to this one was to compare the performances of this newly

trained model to our original model on another novel’s full text: "Dracula"42 by Bram

Stoker. The goal of this new experiment was to see if the added training data from

Frankenstein would make the model perform better on a text from the same genre. In

Dracula, the preprocessing tool detected 1426 potential antimetaboles - a particularly

high number of candidates, even higher than in Frankenstein. Consequently, we chose

to only annotate the candidates classified as salients, even though it meant only being

able to compute the precision of the models for this specific experiment.

We can see in Figure 16 that, precision-wise, the "Frankenstein" version of GPTNeo

125M performed four times as well on the full text of Dracula as GPTNeo 125M Base

did. This promising improvement is mainly explained by the much lower number of

41The first 150 examples, plus an additional 76 examples annotated as false after being labelled as salient
by our model.

42Around 160,000 words, or 9800 sentences.
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Model Tested On Precision Recall F1 Score
GPTNeo 125M
"Frankenstein" Regular Testing Split 95.4% 91.2% 93.3%

GPTNeo 125M
"Frankenstein" Dubremetz’s Antimetaboles -% 57.1% -%

Figure 15: The results of GPTNeo 125M "Frankenstein" on both its regular test split
and Dubremetz and Nivre’s antimetaboles.

Model Tested On #SalientAnnotation #NonsalientAnnotation Precision
GPTNeo 125M
"Frankenstein" Dracula 63 1363 12.7%

GPTNeo 125M
Base Dracula 308 1118 3.6%

Figure 16: The results of GPTNeo 125M "Frankenstein" on the full text of Dracula.
"#SalientAnnotation" (resp. "#NonsalientAnnotation") is the total number
of candidates categorised as salient (resp. nonsalient) antimetaboles by the
model.

miscategorised nonsalient antimetaboles: while our original model categorised as posi-

tive 308 antimetaboles, the "Frankenstein" model only found 63. An interesting devel-

opment however is that our original model detected 3 more true positives, adding up to

a total of 11 salient antimetaboles correctly classified (against 8 correctly classifier by

the GPTNeo 125M "Frankenstein"). This information allows us to compute an upper

bound of 72.3% for the recall of our newly trained model, since we know that at least

11 candidates were salient antimetaboles.

5.2.4 Comparing Two Transformers

The last experiment we conducted was to train an entirely new architecture of model,

Bloom 560M, on the same data and to test it on the same corpora as GPTNeo 125M

"Frankenstein" was. Since the training process was exactly the same as GPTNeo 125M

"Frankenstein" , we decided to call this new model Bloom 560M "Frankenstein" . In

practice, the goal of this experiment was to compare the performances of those models,

and ensure that the low out-of-dataset results we obtained on the previous experiments

were not due to specificities of their architecture.

Once the model was fine-tuned, it was tested against the same testing set as before: the

regular 10% testing split, Dubremetz and Nivre’s antimetaboles and the 1426 candi-

dates from Dracula. The results, visible in Figures 17 and 18, show that Bloom 560M

"Frankenstein" performed worse than GPTNeo 125M "Frankenstein" in all trials but

Dubremetz and Nivre’s antimetaboles43. However, in that experiment, it still performed
43An amusing detail, however, is that it serendipitously classified as antimetaboles two examples - one
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Model Tested On Precision Recall F1 Score
Bloom 560M

"Frankenstein" Regular Testing Split 87.3% 98.2% 92.4%

Bloom 560M
"Frankenstein" Dubremetz’s Antimetaboles -% 66.7% -%

Figure 17: The results of Bloom 560M "Frankenstein" on both its regular test split and
Dubremetz and Nivre’s antimetaboles.

Model Tested On #SalientAnnotation #NonsalientAnnotation Precision
Bloom 560M

"Frankenstein" Dracula 137 1289 5.8%

Figure 18: The results of Bloom 560M "Frankenstein" on the full text of Dracula.

worse than GPTNeo 125M Base and Dubremetz and Nivre (2017)’s model. An impor-

tant detail however is that it still correctly classified as much salient antimetaboles as

GPTNeo 125M "Frankenstein" on Dracula (8, out of at least 11), but its precision is

twice as low because it also outputted double the amount of false positives.

With Bloom 560M being worse on almost all fronts than GPTNeo 125M, the general

trend of transformers models having trouble to properly perform the detection of an-

timetaboles is reinforced. This could be caused by several different reasons, that we

will explore in the next chapter.

5.3 Compiling the new data

Before discussing the results of our previous experiments, there is one additional - and

welcome - outcome that resulted from them: a heap of new data. This data is separated

as follow:

• 15 antimetaboles, with 4 from Frankenstein and 11 from Dracula.

• 1 semantic chiasmus, from Dracula.

• 1 phonetic chiasmus, from the "joke" corpus (Pungas, 2017).

• 1853 negative or unknown (and thus considered as negative) examples, from

Frankenstein and Dracula.

All of the new data from Frankenstein and Dracula were saved in a subfolder of our

aforementioned chiasmi dataset repository44, and the phonetic chiasmus was updated as

sentence from Dracula and one from the joke corpus - that actually are a semantic chiasmus ("She
wants blood, and blood she must have.") and a phonetic chiasmus ("What do you call two nuts on a
chest? Chestnuts.").

44Direct link to this subfolder: https://github.com/Dironiil/ChiasmusDatasets/tree/main/
data/new
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such (from "NotAChiasmus") in the original dataset files.

This new data thus brings our final corpus of chiasmi to a total number of 780 salient

chiasmi (subdived into 664 antimetaboles, 99 semantic chiasmi and 9 phonetic chiasmi),

4675 random extracts with some lexical criss-cross pattern of which 1955 are sentences

from Frankenstein and Dracula and 1388 sentences or pair of sentences which were not

analyzed for any chiastic structure.
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6 Discussion: limitations and future work
This chapter’s goal is to discuss the limitations of our work, what could be done to

improve upon it and what new areas could be researched. It will be subdivided in

three main sections, with the first one talking about the candidate extraction process,

the second one about the various deep learning experiments we ran and the last one

focusing on possible future works.

6.1 Discussing our Candidate Extraction Tool

As presented in the previous chapter, our candidate extraction tool showed mixed re-

sults: while it detected most of the antimetaboles, its embedding part fell entirely flat at

properly extracting semantic chiasmi. Moreover, its current implementation is relatively

slow and could be optimised, especially to work on very large input like Dubremetz and

Nivre did on the Europarl corpus.

6.1.1 The hard Task of Detecting Semantic Chiasmi

6.1.1.1 What Went Wrong

Our tool did not manage to properly detect semantic chiasmi for one simple reason:

the measure we used to do so was too volatile and imprecise. The previous chapter

showed that our embedding model, GloVe (48B, common crawl), gave cosine similarity

between words only loosely tied to their actual distance in meaning. Although the actual

reasons for this are unknown, two can be hypothesised.

First, embedding models are trained using contextual data. The vector representations

of words are learned from one of two techniques: either Continuous Bag Of Words

("CBOW"), in which the model has to guess a word depending on the words around it

or Skipgram, in which the model has to guess the words around a given one. This means

that words which have a high chance of standing in the same sentences have a higher

probability of having a common embedding (like victory and defeat) while words which

will very rarely be seen in the same contexts will have a low or even negative cosine

similarity (like "personification" and "persons") - even though the first pair of words

are literal antonyms whereas the second pair stems from the same abstract concept.

Although cosine similarity is often presented as a way to find words with similar or

dissimilar meaning, it can frequently instead tells us if the words are similarly used -

a correlated but not entirely equal measure, as words can be used in the same context

while being wildly different in meaning and vice versa.
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Second, the automatic translation of words into a mathematical embedding of their

meanings is a very hard task. Words often have different meanings depending on their

context, but the embedding model we used could only assign one embedding vector for

each word. Some words can even be contronyms (or auto-antonyms), that is words with

opposite definitions: an excellent example of this is the verb "to sanction", which can

both mean "to grant approval" and "to condemn". On those, GloVe is simply unable

to compute a proper embedding, and any softwares following up on its results would

receive improper information.

Due to the second point in particular, the choice of the embedding model is highly

important for each task. In our case, we opted for GloVe with a 48B embedding in its

common crawl version (i.e. trained on a wide range of data) because our task had to

deal with words from very varied contexts. As such, we didn’t want embedding models

trained on a specific genre of data that could miss the meaning of words in contexts

they did not know. However, this does not mean that this version of GloVe was the best

embedding software for our task, as we will see in the next section.

6.1.1.2 How Our Pipeline could be Improved

As mentioned in the previous paragraph, which model to use is an important decision for

any NLP tasks involving embedding. We can not be certain that the one we chose, GloVe

48B Common Crawl, was superior to regular embedding models (such as Word2Vec or

FastText, two other ML models for word embedding) on our specific task. Implementing

versions our tool with other embedding models could thus be the first way to try to

improve our pipeline’s performances.

Furthermore, there now exists newer embedding techniques that take into account the

context of words and encode it into their embeddings, such as CoVe or RoBERTa. It is

probable that those models could perform better for our specific task: we were indeed

searching not for words with a general similarity between them, but for words which

are similar given a specific context. We did not know enough about them at the time

to choose them over the more known and recognised GloVe, but we encourage future

researches to look into them for embedding in regard to semantic chiasmi.

An other possible way to improve the extraction of semantic chiasmi candidates is to

use an entire method entirely. We thought about two in particular, but were not able to

implement them: the first one is a system based on a synonym / antonym dictionary;

the second one is based on etymological roots of words. Those two approaches are

described with greater details below:

• Similar to our lemmata approach considering as antimetabole candidates any text

with an inverse repetition of equal lemmata, the synonym / antonym method
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Figure 19: A proposal for an enhanced extraction system of semantic chiasmi candi-
dates parallelising several methods. The result gathering step can either be
a consensus system, or a simpler "logical or" forwarding any positive results
indiscriminately.

would consider as semantic chiasmi candidates any text with an inverse repeti-

tion of synonyms and/or antonyms. Much like Schneider et al. (2021)’s approach

to detect possible chiasmi, this process would not have a perfect recall as a lot

of salient chiasmi are not made of perfect synonyms or antonyms. However, it

would still retrieve a high number of interesting candidates while yielding a much

lower number of entirely uninteresting one. This approach would, for example,

retrieve a chiasmus such as "He arrived in victory, and in defeat departed".

• The second method would look at the etymological roots of words to retrieve

a possible semantic chiasmi. This approach aims to detect chiasmi similar to

Example 8 where "persons" and "personification" are words with the same root,

while having different meaning and sometimes PoS tags. Although it is hard to

gauge how many salient chiasmi could be retrieved with this method, it could be

a welcome addition to other approaches nonetheless to cover for some of their

weaknesses.

Finally, another interesting way to improve the extraction of semantic chiasmi could

be to mix several different techniques. For example, Schneider et al. (2021)’s idea of

using PoS tags is inherently incomplete as some chiasmi are simply not composed of an

inversion of PoS tags but it can definitely detect a high number of them nonetheless - at

the price of an excessively high number of true negatives that can clutter classification

or ranking pipelines. As long as they are robust against a high number of nonsalient

examples however, the PoS tags approach method could then be used in tandem and

not instead of the improved embedding techniques we described just above, with each

completing some of the other’s blind spots. In particular, if enough different methods

are used in parallel, a consensus system (or even a weighed consensus) can be imagined,

where a candidate is considered interesting enough to be extracted only if enough dif-
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ferent techniques detected it. Such a multi-approach system can be visualised in Figure

19.

6.1.2 Optimising the process

Our main extraction tool was relatively slow, detected candidates that could have been

ignored and its output was not usable for all kind of ML training. However, all those

problems could have been improved upon given more time and work on it:

• Its slow runtime was due to some poor choices of implementation, mainly in its

main processing loop and in the way the files were loaded and parsed for lemmata

and other tags. While the main processing loop would be quite hard to entirely

refactor and optimize, the loading and parsing part could have been. In particu-

lar, in the current version of the tool, a file is entirely loaded and parsed before

the candidate detection process can begin. This process is inefficient, and files

could instead have been loaded and parsed on the go, saving a lot of memory and

consequently time for the biggest files like very large corpora. Indeed, whereas

Dubremetz and Nivre (2017) were able to process a large part of the Europarl

corpus, our tool had troubles parsing 7.5MB files on a computer built in 2021.

• Moreover, the way the detection was implemented was not perfect: mainly, our

tool looked for candidates in any 30-words windows, without any sequence of

characters breaking this search. This is particularly problematic when processing

files with a lot of small, independent extracts, as possible candidates over two (or

sometimes more) extracts could be detected even though they obviously can not

be salient chiasmi. This could have been improved through a medium refactor of

our tool: by asking for a list of "break" characters after which the sliding window

should be reinitialized, this problem would almost entirely vanish. For example,

if a file is made of extracts separated by a blank line, then the double character

sequence \n\n could have been given as a break sequence to keep the window

from sliding continuously over several examples.

• Finally, the easiest to solve out of those three problems is the output of our tool. In

its current version, its output is composed of: the raw text of the candidate extract

with some extra characters on its left and right for context, the character position

of the members of the chiasmi candidate, their index in the sentence, the position

of the candidate extract in the greater file, their pos tags and finally two lists, one

being all the words in the candidate, and one being all their lemmata.45 While

45As this thesis could not make use of this output, the datasets we presented earlier are not parsed
according to it. More details about parsed data can be found in Meyer (2023), which focused on
classical ML methods and thus used our tool’s output directly.
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this output presents a lot of information usable by different statistical approaches,

one is sorely lacking: the entire sentences over which the candidates exist. This

proved a problem twice: once during the annotation process, since it is harder to

annotate candidates as salient or not without their full sentences for context and

afterwards during the training process, since the transformer models trained in

this thesis wanted inputs made of full sentence, we could thus not use our main

tool as a way to extract more negative examples from random texts. By adding

this information, our tool could be made more general and usable for a larger

variety of tasks.

In general, an entire refactor of our tool using better techniques could yield a largely

improved software and thus the entire detection, annotation and training pipelines imag-

ined in previous chapters.

6.2 Finding more Salient Chiasmi, more Easily

In Figure 9, we presented a possible pipeline to collect more humanly annotated data,

more easily. However, we were never able to properly run it with the current version of

our tool and the models we had at our disposal at the time. Despite those problems, this

idea is still in our opinion an excellent way to improve the amount of data regarding chi-

asmi (or in general, regarding other rhetorical figures with different candidate extraction

softwares and classification / ranking tools).

For example, such a pipeline could be implemented using the model from Meyer (2023).

His method of detection, building upon the existing researches on classical ML, shows

promising results and could thus be used as a base to annotate more antimetaboles.

However, it is highly important to keep in mind that this proposed method to gather

more data is not foolproof: it may construct datasets systematically biased against some

chiasmi. Indeed, by using the existing models to detect new examples of chiasmi, any

bias those models might have against rarer forms of chiasmi (for example, chiasmi with

an unusual syntactic pattern) will be repeated in the resulting dataset. If such a bias ends

in a dataset, then any models trained on it would reproduce it and any further datasets

produced while using them would repeat it, creating a vicious circle.

As such, the research for more examples of salient chiasmi should not rely entirely on

this proposed semi-automated method. Moreover, when some biases are discovered

with a given model, they should be openly presented and discussed so that following

works on the subject could take them into account.
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6.3 Transformers for Antimetabole Detection: a Good Idea?

As we have seen in the previous chapters, the transformers we trained produced very

poor results as soon as they left their original datasets. This section will try to understand

how and why this happened, how it could be corrected and, in general, how future works

could approach the use of ANN and DNN for the detection of antimetaboles or even

chiasmi at large.

6.3.1 The Failures of Transformers on Antimetabole Detection

As we have previously described, transformers have taken upon a large part of NLP over

the last four years. This was possible thanks to their incredible results on a high number

of tasks, often greatly improving upon the previous state of the art. Our failure to make

them on the task at hand is thus even more noticeable, but can actually be explained by

several points. Those points will be explored from the most general, about transformers

at large, to the most specific, about our experiment in particular.

The first possible cause of our poor results is the inherent way transformers work.

Whereas the classical ML approaches from Dubremetz and Nivre (2017) and Schneider

et al. (2021) used for input specific features extracted from the candidates, transformers

only ever take as inputs "raw texts" (or rather, their tokenized version). This means that

no task-specific features can be used to enhance the data on regular pretrained trans-

formers: they can only look at lists of tokens and try to learn the necessary properties

out of those list. This works well for a lot of NLP tasks, but not all can be deduced

entirely through general learning. Moreover, transformers’ attentions are, by default,

equally spent on each words and punctuation symbols for a given input. This means

that any tasks focusing on specific words of a given input would be harder to solve for

a transformer.

The second possible cause (and probably the most impactful) is another inherent prop-

erty of transformers that we did not mitigate properly. Indeed, transformers are per-

mutation invariant, i.e. not sensitive to the order of the tokens in their input. The two

inputs "I am you" and "am I you" would for example be considered the same way by

any regular transformer. This comes from the fact that transformers process text inputs

not by reading them words per words, but by looking at each words in relations with

every other words in the input - both forward and backward. When this permutation

invariance becomes an issue, the positions of the words from the raw inputs are usually

encoded either in the input during the tokenisation process, or using specific attention

matrices within the transformers themselves (Chen et al., 2021).
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Input Text Corresponding Embedding
It is a squirrel. [ 632, 318, 257, 33039, 13 ]

squirrel is. It a [ 33039, 318, 13, 632, 257 ]

Figure 20: The results of the GPTNeo Tokenizer when used on text inputs with shuffled
word.

Something we noticed at the very end of our thesis, however, is that both the tokenizers

we used both for GPTNeo 125M and for Bloom 560M do not encode those position in

the input - and neither were there in our knowledge any mechanisms to transfer such

an information to the attention modules within the transformers. This can be seen in

Figure 20, where two inputs containing the same word (one sentence and a shuffle of it)

have the same tokens for each given word - like "632" for the word "It" (first and fourth

position, respectively). This if of course a large oversight, as chiasmi in general and

thus antimetaboles in particular are highly sensitive to the order of words: while "death

to life, life to death"46 is a proper and even prototypical antimetabole, "death to death,

life to life" is not a salient antimetabole, or even a chiasmus at all.

Finally, the third possible cause for our low results could the way with which we han-

dled our training data: while we had a high number of both positive and negative ex-

amples, most of those did not came from the same sources. What this implies is that

positive examples might have more key differences with negative examples than simply

being salient antimetaboles. As such, our transformers could possibly pick as relevant

features for classification details in the text that are not actually relevant to being an

antimetabole, like the vocabulary, the length of the input or specific punctuation. This

last point was directly noticed during some manual experiments, as the almost iden-

tical inputs "East is West, and West is East" and "East is West, and West is East."
were classified differently by GPTNeo 125M base, with the non-punctuated one being

incorrectly classified as nonsalient.

Using such out-of-task features would explain why they appeared so effective when

tested within their dataset, but proved less effective when tested on similar but out of

dataset antimetaboles (those of Dubremetz and Nivre (2017)) and entirely ineffective

when testing entirely out of genre, on the two novels. It would also explain why the ad-

dition of the data from Frankenstein to the training set made GPTNeo 125M "Franken-

stein" worse on almost all front compared to GPTNeo 125M Base : as this data included

both negative and positive examples from the same source, there was not as much out-

of-task features that the model could train on and it was thus left with a harder (although

closer to the actual) task than usual.
46From Dracula.
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In general, this problem of data could also explain - in part at least - why our models

had such a low precision when it came to the novels (as a reminder, the best precision

we obtained on this task was 12.7%, by GPTNeo 125M "Frankenstein" on Dracula).

Most of their training data were not from literary pieces, but examples with salient

antimetaboles tend to show a higher "rhetorical interest" than the examples without - a

rhetorical interest that is also found in quantity within both novels, with their authors

being highly renowned for their works. If their training made them look for features

more indicative of rhetorical interest than of the actual presence of antimetaboles, the

models would hence be misled on a text where most sentence are carefully crafted.

This problem of training on the wrong features can also be envisioned within a perspec-

tive entirely oriented on rhetorical figures. As Harris et al. (2018) presents, what we

call salient chiasmi are never alone. They are always accompanied with several other

figures that usually enhance their effects - when those additional figures are not inherent

to the "main figure", like the repetition of lemmata within antimetaboles. Some of the

most common co-figures are, for example, parisons47, mesodiploses48 or anaphoras 49.

A model trained on antimetaboles could thus be misled and "think" that it is looking for

repetitions or parisons instead, if most of its positive examples show them while most of

its negative examples do not. This is something that we have actually noticed, as a sub-

stantial number of false positives from the novels presented some form of repetitions,

or at least sentence structures that could be those of an antimetabole.

6.3.2 Possible Improvements to our Work

The first and most obvious way to improve the performance of transformers for an-

timetabole detection would be to correct the problems listed in the previous section.

Out of those three, the first one would be the hardest to solve as it is the most intrinsic

to transformers. Transformers are inherently made to look at sequences of words, and

using additional features would either need for them to be encoded within the token

sequences fed to the transformers, or to create a new architecture for a transformer - and

therefore train it from scratch, a very data and computing power hungry process.

The second one, however, could be simply solved by a better implementation of our

tools: using the latest and most effective position encoding techniques, such as the one

described in Chen et al. (2021), could highly improve the results of similar models to

ours on the same task.

Finally, the third problem would be harder to entirely correct, but could be mitigated.

To entirely correct the bias in the data, negative (resp. positive) examples should be

47A parison happens when a given syntactic structure is repeated over a serie of clauses or sentences.
48A mesodiplosis is the repetition of one or several words in the middle of several clauses or sentences.
49An anaphora is the repetition of words at the beginning of several clauses or sentences.
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taken out of all sources that were used to find positive (resp. negative) examples. This

is an almost impossible task, seeing as a lot of our examples are anonymous and their

original source unknown. Another solution could thus be to simply cut out all the data

which do not have oppositely labeled examples from the same source but this would

be impractical, as the less there is training data, the less effective the resulting models

for almost all ML tasks. However, this problem can be mitigated in two ways: first,

by expanding the number and genres of sources from which we draw our positive and

negative examples, and by expanding the scope of negative examples. What we mean

by this second point is that negative examples containing figures often associated with

antimetaboles should be added to the training data. The first half would mitigate the

possibility for models to overfit on specific features of the examples, as there would be

much more variety within them, while the second would keep them from training on co-

figures instead of antimetaboles themselves, as those co-figures would also be present

among the negative examples without the actual point of focus.

Another way that could improve the performances of transformers on our task would be

to take on the idea of Dubremetz and Nivre (2015) and use a ranking system instead of

a classification system. In their article, they quite adequately described how the ques-

tion of saliency within rhetorical figures is not black or white but rather a graduated

phenomenon, and that any figure should not be treated as either salient or nonsalient,

but only as more or less salient than another figure. With this argument in mind, they

decided to create a classical ML model that would not classify the antimetaboles in

a given input, but only graduate them from most salient to least salient. Using such

an approach with transformers would allow for finer results, ranking the antimetaboles

whose salience is most confidently assessed by the models higher - and thus more eas-

ily accessible. Moreover, the use of a ranking system would also allow for more and

better metrics to be used, such as the average precision50 of a model, or precision / re-

call graphs. A similar approach would be to add a "certainty" output to our classifier

model, indicating the certainty with which the model classify a certain object in a given

category.

As an additional point, the choice of training hyperparameters can also impact the final

performances of any ANN. Parameters like the number of epochs, batch size, learning

rate or the size of the model can make or break a given experiment. As we have not

used different hyper parameters on the same models for our experiments, we cannot

know how much our choice impacted their results. This is an issue that could be more

50The average precision is the mean of precisions at several threshold within the ranked information,
weighed by the differences in recall. It was first proposed for information retrieval but works well for
any task where a ranking model can gradually recover more positive examples the further down the
ranks we look.
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systematically explored in the future.

Finally, it is important to remember that while transformers have revolutionized many

researches within the field of NLP, they are not the correct solution for every tasks. In

this specific case, the task at hand might simply be too specific for generalist models

like them to work on it directly. Their results may (and will probably) improve on this

specific task, but keeping in mind that other architectures exist is crucial.

6.3.3 ANN and DNN for Antimetabole Detection

As said in the previous paragraph, transformers are not "the end of history for Natural

Language Processing" (a quote from the title of Chernyavskiy et al., 2021): despite

their good results in NLP, other neural networks techniques could be used for the task

at hand. This idea can be divided in two halves:

• On one hand, simpler ANN or DNN could be used with the features studied by

Dubremetz and Nivre (2017), Schneider et al. (2021) and Meyer (2023). On

several tasks, well-crafted ANN are the state of the art instead of classical ML

methods or large and generalist DNN. Due to its specificities, the detection of

salient antimetabole might be one of them.

• On the other, more complex DNN looking at texts as a whole like CNN or LSTM

networks might have a better grasp on this specific task than transformers due

to inherent properties. Each of these two specific examples in particular have

reasons to be studied: CNN are made to look for specific patterns, independent

of the size or position of these patterns within the complete input; and LSTM are

recurrent networks particularly good at processing ordered series of inputs while

focusing on specific relations withing those series.

In general, the failure of transformers to properly fulfil the task at hand in this thesis

should not discourage future researches to look deeper into ANN and DNN as possible

solutions for the detection of antimetaboles - or chiasmi at large. Rather, the problems

encountered here can be used as foundations for the development of more robust, effec-

tive and efficient systems.

6.4 A few Additional Ideas for Future Works

This section will develop a few additional proposals for future works regarding the

detection of antimetaboles. The first one is based on the expansion made by Schneider

et al. (2021), the second stemmed from a discussion with Pr. Randy A. Harris, from the

University of Waterloo, the third came from a discussion with Yohan Meyer in which
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we talked about the respective results of our approaches and the fourth from some early

ideas we finally decided not to work upon during this thesis.

6.4.1 Expanding the Search to Semantic Chiasmi

Salient antimetaboles are only one small part of a larger family and, although they are

the easiest to detect and the most common among chiasmi, their detection is only one

step in larger walk towards a full understanding of chiasmi. Exploring chiasmi at large

was already tried in the past by Schneider et al. (2021), although they are - to the best of

our knowledge - the only authors to date who have tried such a task. However, we have

not been able to immediately follow in their footsteps due to both a lack of data and an

improper candidate extraction tool.

Researching the effectiveness of transformers or other DNN techniques regarding the

detection of salient semantic chiasmi could however yield highly interesting results. As

transformers are inherently looking at the words through semantic and relational lenses,

models which are trained on semantic chiasmi while taking into account the possible

improvements we’ve listed above have a chance to surpass the current state of the art.

6.4.2 Understanding the What and Why of Rhetorical figures

The second proposal originates from a point already described in Section 3.3 that orig-

inated from Pr. Harris and Jelena Mitrović: according to them, complete researches on

any topics within the field of Computer Linguistics should not only focus on the forms

of the objects but also their functions. In our case, salient antimetaboles are not salient

for no higher reasons, they are salient either because they convey a new meaning that

would be absent were it not for their presence, because they enhance an already present

meaning or because they make their host piece more pleasing to the ear - often even,

because of several or all of those reasons. In Example 13, the antimetabole is vital to the

joke, as it shows the opposition between "the optimist" and "the pessimist" views while

also adding to the humor because of the close structure between both clauses despite

their opposite meaning.

• (13) An optimist goes to the window every morning and says, ’Good morning ,

God !’ The pessimist goes to the window every morning and says, ’Good God !

Morning !
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• (14) For years I have loved her . For years she has loved me .51

Following Pr. Harris arguments, one way the current state of the art on antimetabole

detection could be improved is to work on tools that would not (or not only) detect

salient antimetaboles within a text but also the reason they are salient in the first place.

As Examples 13 and 14 show, antimetaboles can fulfill opposite roles within a rhetorical

unit: while the first one shows an opposition between the two points of view, the second

shows how both characters reciprocate each other’s feelings. Having the knowledge on

the why an antimetabole is present in the first place (or any other rhetorical figure) is

thus highly important for a lot of higher level tasks, like sentiment analysis or semantic

relationing, while also being useful for any human users of such a tool.

6.4.3 Combining Two Approaches

The final proposal comes mostly from the intertwining of Yohan Meyer’s work and my

own: as we’ve closely worked together for several months and still stayed in contact

after entirely splitting the subject of our theses, we were able to compare the results of

our theses. From those comparisons stemmed an idea: transformers and classical ML

models look at the problems from two very different perspectives. As such, they could

possibly be combined to fill each other’s blindspots: the lack of specific features and

attention towards specific words and orders with transformers, and the lack of consider-

ation for the general sentence(s) at hand with classical ML methods.

Three possible mixed architecture can be envisioned:

• The most simple of the three is to put them in a sequential pipeline, where the

input is first fed to one model and then to the other if the first one deemed it

salient. A good example would be to feed the input to a transformer generally

trained to detect "antimetabole-like" sentence structures, before feeding the most

likely candidates to a classical ML model. This approach would improve the

precision by filtering more true negatives, but could come at the cost of recall as

positive candidates flagged as "negative" by any models would be discarded.

• The second approach is to feed candidates to both models at the same time, and

to consider as salient any candidates flagged positive (or above a certain rank, in

the case of ranking models) by one model or the other. Opposite to the first one,

this architecture would improve the recall, by allowing candidates to appear even

if they were ignored by one of the approach, at the cost of precision.

• The last and possibly most interesting architecture would be to use one model’s

output as the input for the other. The easiest scenario to imagine would be a
51Arthur Conan Doyle.
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Figure 21: A possible architecture to combine both classical ML and transformers: a
transformer providing additional features to a classical ML model.

pipeline in which a candidate is, at the same time, both transformed into features

and fed into a transformer trained to score the candidate on a given chiasmi-

related task. The candidate’s features and the score are then all fed to the classical

ML model as input features. This would allow the classical ML model to take into

account the transformer’s score on the candidate, a score computed with the whole

sentence in mind and which may thus show more than what the base features can.

In particular, a visualisation of the last architecture is visible in Figure 21. Unlike the

first two approaches described above, combining both models together could theoreti-

cally improve both precision and recall. This makes it the most promising out of the

three, especially as a well-crafted pipeline could draw from the state of the art for the

regular features while improving upon it thanks to the transformer model.

6.4.4 Using Transformers to Augment the Available Data

At the very beginning of this thesis’s research, one of the possible path was not to work

on detecting salient antimetaboles within any given texts, but to specifically look for way

to augment the existing data on antimetaboles. Although we finally did not explore this

idea directly, it is still a promising way to improve our effectiveness regarding salient

antimetabole detections as most ML models work better the more training data they

have.

Transformers, in particular, would be particularly adapted to such a task as they were

first designed to be used in sequence-to-sequence tasks. By training a transformers

on a high number of positive and negative examples of salient antimetaboles, it could

generate more examples which could then be manually or semi-automatically anno-

tated. Whether those examples end up being positive or negative, they would still be
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a good addition to the existing data: positive examples would give more antimetaboles

on which to train other models, whereas negative examples would force other Deep

Learning models to "understand" where the generating transformers failed to create an

antimetabole.
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7 Conclusion
In this thesis, we explored how Deep and Transfer Learning could be used to detect

salient antimetaboles within English texts. More specifically, our main research fo-

cused on the effectiveness of large and generalist pretrained transformer models such as

GPTNeo and Bloom when fine-tuned on salient antimetabole classification with a rela-

tively large dataset (around 2,000 examples). In order to do that, we created a modular

Python 3 notebook pipeline to load all necessary data from distant repositories, fine-

tuned our models using publicly distributed, generalist, pretrained transformers (respec-

tively GPTNeo 125M and Bloom 560M) as bases, test them in-dataset, out-of-dataset

on antimetaboles from other works and entirely out-of-genre on two novels in the public

domain (Frankenstein, by Mary Shelley and Dracula, by Bram Stoker). To implement

and train the transformers, and allow for the high modularity of our pipeline, we used

Huggingface’s transformers library (Wolf et al., 2020b).

Our results on the main question were mixed at best: as we have shown, transformers

can quickly overfit on specificities within the training data, showing excellent results in

their original datasets but mediocre or even bad ones when tested outside of them. In

particular, their precision on out-of-genre data was particularly low, due to the very high

number of sentences they considered as salient antimetaboles because of, we supposed,

other interesting but not directly related rhetorical features within them. However, we

concluded that those low results are not necessarily cause not to dig further in this

direction, as several parts of our work could be improved upon or entirely changed to

yield better results.

However, our research process also yielded two notable side-results: a candidate ex-

traction - detection - annotation semi-automated pipeline that could be used for future

researches, and a very large dataset of various chiasmi including almost 800 positive

examples of chiasmi, among which can be found slightly under 700 antimetaboles. In

particular, this dataset is an immense improvement from the previous best available col-

lection of data in English, the 31 antimetaboles from Dubremetz and Nivre (2017) and

can thus be used for a very wide array of Machine Learning tasks, from classical Ma-

chine Learning to a variety of Deep Learning techniques. Our proposed extraction -

detection - annotation pipeline can moreover allow for even more data to be collected,

more easily - further easing the sore problem that was the lack of data regarding chiasmi.

From this point onward, future works basing themselves upon this thesis could thus

take one of several paths, with a few of those described here. The first one would be

to use the same pipeline as we did, but improve upon the several shortfalls we have

noticed to see the results of those improvements on the actual results of the models.
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The second would be to extend our method to semantic chiasmi in general and compare

those results to Schneider et al. (2021), using the non-negligible 100 semantic chiasmi

we have collected as training data. The third one would be to look into other Deep

Learning methods for antimetabole (or even chiasmi) classification and compare them

both to transformers and classical ML methods. The fourth one would be to look how

to join classical ML methods and DL / TL methods into one single pipeline to take on

the qualities of both while mitigating each other’s weaknesses.

To conclude, we have shown in this thesis that transformers are not an easy and per-

fect fit regarding the classification of salient antimetaboles. However, the field should

nonetheless be explored deeper as the proper detection, classification and eventually

explanation of rhetorical figures is a particularly important process for several NLP

high-level tasks such as but not limited to sentiment analysis, literary essays grading or

writing assistants. The past fifteen years have shown how the research community can

obtain excellent results on tasks that were entirely unresearched before, and we hope

that this thesis have provided, for anyone who wish to further our understanding of an-

timetaboles and chiasmi, a fundation and a glimpse into the steep progress of NLP over

the last decades52.

52One could recognise here a chiasmus that no research to date could detect: the last words of this thesis,
"the steep progress of NLP" mirror the very first words of its introduction: "NLP has progressed
steeply".
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Appendix
A List of Acronyms

Acronym Meaning

NLP Natural Language Processing

PoS Part-Of-Speech

ML Machine Learning

SVM Support Vector Machine

DL Deep Learning

TL Transfer Learning

ANN Artificial Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

B List of Definitions
Linguistic definitions:

• Chiasmus: The inverse repetition of any two pairs of linguistic elements in a

larger coherent body of text.

• Antimetabole: A "lexical chiasmus", that is an inverse repetition of lexical ele-

ments named "lemmata".

• Lemma (plural lemmata or lemmas): In linguistics, the canonical form of a

given set of related words.

Machine Learning definitions:

• Machine Learning (ML): "The use and development of computer systems that

are able to learn and adapt without following explicit instructions, by using al-

gorithms and statistical models to analyse and draw inferences from patterns in

data."

• Classical Machine Learning: The set of statistical tools aiming to learn con-

clusions about a given dataset by using specific mathematical features, like the

distance between data-points or the direction of vectors.

• Artificial Neural Networks ("ANN"): A network of interconnected nodes which

aims to emulate a simplified version of animal brains to process inputs: the nodes

are therefore called neurons, and the whole network a neural network.
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• Deep Neural Network ("DNN"): An ANN with a high number of neuron layers

between the input and the output, usually more than ten.

• Deep Learning ("DL"): The training and use of Deep Neural Networks to exe-

cute tasks and solve problems.

• Transformer: A Deep Neural Network which uses mechanisms of self-learned

attention to process entire input sequences in a parallelised, permutation invariant

manner.
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