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Abstract
Foundation models have demonstrated significant advancements
in natural language processing and computer vision, yet their po-
tential in cybersecurity is unexplored. Current memory forensics
tools and machine learning models often need more versatility
and adaptability, presenting a crucial research gap. To address this,
we introduce MemBERT, a foundation model designed explic-
itly for memory forensics. MemBERT is trained on extensive pro-
cess dump data, with and without metadata inclusion, to capture
intricate patterns present in main memory. Its potential impact
on cybersecurity practices could be significantly similar to the ef-
fects of foundation models in natural language processing. We
aim to streamline memory forensics by reducing the manual effort
and coding traditionally required by cybersecurity practitioners.
Through comprehensive experimentation, we demonstrate Mem-
BERT’s efficiency in a downstream task of extracting OpenSSH
encryption keys and other memory structures from raw process
dumps. The results reveal that the robust embeddings generated
significantly help identify structures within memory. Additionally,
we demonstrate that our model’s embeddings can be compressed
with minimal loss of accuracy, further highlighting its efficiency.
Our findings with MemBERT go beyond just its performance in a
specific task. The findings also indicate MemBERT substantially
advances memory forensics, providing a versatile and powerful tool
for cybersecurity professionals. This research addresses the limita-
tions of the current forensics process model and sets the stage for
the broader application of foundation models in the cybersecurity
domain. Our results, code and models are available at HuggingFace
and https://github.com/padas-lab-de/memBERT.
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1 Introduction
Digital Forensics is defined as the "process of employing scientific
principles and processes to analyze electronically stored informa-
tion" [13]. Digital forensics plays a crucial role in modern cyberse-
curity practices. "The objective of forensic science is to determine
how digital evidence can be used to recreate, identify suspects to
analyze or diagnose the victim machines" [12]. A key aspect of mod-
ern digital forensics is examining a computer’s volatile memory.
The volatile memory of a computer, commonly known as Ran-
dom Access Memory (RAM), contains a wealth of information. The
memory contains information about the running processes, ses-
sion keys, encryption keys, user information, and much more. We
could inspect this memory and analyze its information using digital
forensic techniques if we have the appropriate access rights. In
the current landscape of memory forensics, no general-purpose
machine-learning models could work on raw bytes in memory.
Traditional digital forensic techniques involve a lot of manual inter-
ventions, rule-based approaches, and complex tool chains [12, 22].

Machine learning applications are slowly proliferating in the
memory forensic domain, but they specialize in a single task. We
must train such models for each task, requiring more effort and
time. The better approach is to train a large general-purpose model
known as a foundation model [2]. The idea of a foundation model is
that having models that work across domains and problems is more
manageable and cost-effective than training a model every time for
each specialized task. Foundation models are usually pre-trained on
unlabeled datasets in an unsupervised setting and then fine-tuned
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for specific applications. Text-based foundation models or large lan-
guage models(LLMs) such as Bidirectional Encoder Representations
from Transformers (BERT), GPT, Llama, and Mixtral, to name a few,
use the transformer architecture [6, 9, 19, 20].In short, foundation
models revolutionized machine learning by being effective across
multiple domains. These models can generate coherent text and
images, translate text from one language to another, summarize
content, generate software code or algorithms, and even detect
hate speech [4, 5, 21]. These capabilities across different domains
can also be seen in many popular models such as DALL-E, GPT,
SORA1 [1, 3]. A foundation model for a main memory-specific appli-
cation would benefit many practical applications, such as malware
detection, intrusion detection, and even virtual machine introspec-
tion (VMI), highlighting the potential impact of our study. However,
foundation models currently available for other domains, such as
language or images, are unavailable for digital forensics. In our
work, we aim to close the existing gap by introducing the first
foundation model trained on memory dumps, which is a novel and
intriguing development in digital forensics.

Our main contributions are
• the first foundation models for main memory data with and
without metadata information.

• a method of extracting embeddings from the trained models
and compressing the embeddings for downstream tasks.

• a use case of the foundation model on extracting SSH en-
cryption keys from process heap dumps.

2 Related Work
Bommasani et al. coined the term foundation model [2]. Founda-
tion models are powerful architectures primarily trained on text
data for natural language processing, images for computer vision-
based applications, and graphs. The parameter weights of such
pretrained foundation models are available, and we can fine-tune
the architecture for specific tasks based on the individual appli-
cation scenario. Most foundation models rely on the transformer
architecture as the building block. The transformer architecture
relies on the "attention" mechanism, where it models the local and
global context dependencies of inputs [20]. Therefore, the attention
mechanism gives some parts of the input sequence more impor-
tance than others. This attention mechanism solves the issue where
earlier parts of the sequence in long sequences were not weighted
less even though they were important. Devlin et al. introduced the
Bidirectional Encoder Representations from Transformers(BERT)
model [6]. The authors improved upon the work of Vaswani et al.
by incorporating bidirectional attention [20]. The idea was that
representations generated by looking only from left to right were
unsatisfactory in many scenarios, and having a bidirectional lan-
guage model helps better retain the context. Sahn et al. distilled
the BERT model to create DistilBERT and reduced the size of the
BERT model by approximately 40% [14]. DistilBERT has the same
general architecture as BERT with half the number of layers. The
authors say that “variations on the last dimension of the tensor
have a smaller impact on computation efficiency for a fixed param-
eters budget than variations on other factors like layers.” This is the
primary reason for reducing the number of layers in the DistilBERT
1https://openai.com/research/video-generation-models-as-world-simulators

architecture. Even with the parameters reduced, DistilBERT retains
97% of the performance of BERT. Meta introduced the Large Lan-
guage Model Meta AI (LLaMA), a 65 billion parameter open source
model available at smaller sizes, even going down to 7 billion [19].
The authors claim that "LLaMA requires far less computing power
and resources to test new approaches, validate other’ work, and
explore new cases." The authors trained the model on 1.4 trillion
tokens of text across 20 different languages, focusing on those with
Latin and Cyrillic alphabets. One of the most famous currently
available models is the GPT model from OpenAI. Radford et al.
introduced one of the first models known as GPT [11]. The authors
attained significant performance gains by generative pre-training
of the language model on a diverse corpus. A fine-tuning step fol-
lows this pre-training step, where the authors use task-aware input
transformations.

We then look at the research for our downstream task, which
is extracting SSH encryption keys. Sentanoe and Reiser developed
a tool that extracts SSH Keys based on the decryption of SSH net-
work traffic [16]. According to the authors, the algorithm detects
establishing SSH connections and extracts information from the
cryptographic algorithms. The algorithm also passively captures
the network traffic into a PCAP file. A plug could decrypt this cap-
tured communication later. The authors also use apriori knowledge
about user-lever dataset structures in this method. Sentanoe et al.
also developed an entropy method to extract SSH Keys and TLS
keys [15]. The method extracted keys of different lengths based on
the OpenSSH protocol. The authors then transferred this knowl-
edge to extract TLS keys, even though the algorithm was never
explicitly trained on TLS keys. The dataset used by the authors is
open source and publically available on Zenodo. Taubmann et al.
developed a method to extract keys using knowledge of the struc-
tures within the heap combined with the pointers found within
the heap itself [18]. Their method requires root permissions to dis-
able SELinux. Other than these, the method does not require any
additional modifications.

3 Method
We aim to train a foundation model (MemBERT ) for memory foren-
sics, which entails training a model on unsupervised data with raw
main memory data. We then would fine-tune for the downstream
task of extracting SSH encryption keys. Secure Shell (SSH) is a
widely used protocol for server connections, and OpenSSH is no-
table software based on it. The SSH protocol connects to a remote
server from a client machine. This popularity also means malicious
actors use the SSH protocol to connect to remote machines. Re-
trieving communication data between servers and malicious actors
is crucial for analysis and future prevention of intrusions [17, 23].
Moreover, identifying and monitoring changes in data structures
within process heaps can provide valuable insights into thwarting
future attacks. Our source code is open source2 and all models are
on HuggingFace3.

2https://github.com/padas-lab-de/memBERT/
3https://huggingface.co/johannes-garstenauer
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3.1 Dataset
We require a large dataset of raw memory data with labels and
good metadata information for the intended downstream task of
extracting SSH encryption keys to train MemBERT. Since we train
MemBERT on unlabeled data, a larger dataset will include more
variety and help the model generalize better. We found a publicly
available dataset4 [7] that contains approximately 100k different
OpenSSH heap dumps, where each heap is around 100KB in size.
The authors split the dataset into different SSH scenarios: base,
client-side, secure copy (SCP), and port forwarding. Multiple ver-
sions of SSH are available for each scenario; the heaps are organized
based on each version’s encryption key length. Each scenario has
four different lengths: 16, 24, 32, and 64, and these lengths are
based on the encryption algorithm used. This dataset is a perfect
candidate for our task as it has over 15GB of raw process dumps.

3.2 Using no metadata information
We intend to train a model that can generate representations on a
general level. Therefore, we create a fixed-size raw-byte sequence
from the dataset. To do this, we create 128-byte slices with 64-bytes
of overlap between them. We consider 128-byte slices because it is
a good balance between containing more structural information in
the slice. If we had a smaller size, it would mean that some structural
information could be lost, and having a larger size would mean
that multiple semantic structures might be present in the same
slice. Therefore, 128-byte is a sweet spot between having unique
local structures andmaintaining enough semantic information from
larger structures. For this, we start at the beginning of the raw heap
data and increment the index by 64 bytes while extracting 128-byte
chunks for training. If the extracted slice contains only zeros, we
discard that data. We refer to these 128-byte blocks of raw data as
chunks or slices and MemBERT trained on this data as the slice-
based model because we train the model on chunks or slices of raw
process heap data.

3.3 Using metadata about pointers and malloc
headers

The second method we implement uses metadata information we
could extract from the heap data. Taubmann et al. showed that
there are semantic structures within the heap [18]. The authors
show that extracting keys using similar semantic information and
knowledge about the underlying structures is possible. To identify
and generate the semantic structures, we make some generalized
assumptions about the heap. Furthermore, we outline the assump-
tions in subsubsection 3.3.1. Since we use metadata information to
identify structures and use those structures to train another version
of MemBERT, we refer to the model trained in this way as the
structure-based model or metadata-based model. We use the word
struct and structure interchangeably here.

3.3.1 Assumptions. We make certain intentionally broad and ver-
satile assumptions about the heaps for the extraction process. These
assumptions facilitate an adaptable method that we could apply to
various systems and contexts. Firstly, we assume that a heap dump

4https://zenodo.org/records/6537904

of the target system can be acquired. We need to reconstruct the vir-
tual address mappings of a specific process to obtain a heap dump
from the raw physical memory. All the modern forensic memory
tools do satisfy this fundamental requirement. The second point of
assumption is that the heaps contain the cryptographic keys. Al-
though there are ways for processes to store key material elsewhere,
we rarely see such scenarios in practice. Thus, this requirement is
only a minor limitation as well. We also assume that the process,
OpenSSH in our case, stores the cryptographic keys within data
structures that other data structures cross-reference. This cross-
reference enables us to follow pointers to extract the cryptographic
keys. Lastly, we require that a memory allocator be used to allocate
data structures by the process to the heap. The malloc function,
for instance, generates malloc headers containing required meta-
data like the allocation size of data structures. The size information
lets us limit the search space for the end of the structure, thus we
make the assumption that the size information is present in the
malloc header. Importantly, we do not require specific assumptions
about the hierarchy or layout of data structures, which makes our
approach broadly applicable to various processes.

3.3.2 Extraction of structures and labeling. We consider a struc-
ture or struct as any data object allocated on the heap. It can be
a string, object, structure, array, or integer. We do not differenti-
ate between the data types and consider everything allocated as
a structure. The first step is to identify the pointers among the
raw data. For this, we know that pointers are 8-byte aligned and
have a specific pattern. We identify pointers by checking if the
addresses, they point to, fall within the heap address range. We do
not require additional mechanisms for address translation 5, given
that the mapping of the virtual addresses to physical addresses
was resolved by Fellicious et al. in the dataset [7]. Next, we look
for a valid malloc header which should be present right before the
allocated block and should contain the block size. By having the
starting address (obtained from the pointer) and size (obtained from
the malloc header), extracting the structure should be straightfor-
ward. These identified structures of raw memory are then collated
into a dataset and used to train the structure-based MemBERT.

3.4 Pretraining
Our methods of using structures or slices differ only in how we
process the data for training MemBERT. All the other steps in
training are identical, including the hyperparameters for tuning
the model. Our structure-based MemBERT is trained on raw data
from semantic structures, and slice-based MemBERT is trained
on chunked raw data with overlap. The selection of a model is
significant because it requires enough expressive power to learn
from the different patterns present in the data. We want to use the
smallest possible model that aligns with our dataset. The smallest
possible model is more accessible to train without requiring high-
end computing resources. The Distilbert model thus satisfies our
requirements and has a proven track record of learning different
patterns [14].

5https://tc.gtisc.gatech.edu/cs6265/2022-summer/refs/amd64-vol2-sys.pdf
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We train a tokenizer from scratch on the memory data. A tok-
enizer converts the data, raw memory in our case, to a machine-
readable form. We use the Byte-Pair-Encoding(BPE) tokenizer to
tokenize the raw data sequences in our dataset [10]. The advan-
tage of the BPE tokenizer is that it looks at the byte level, which is
beneficial in our scenario as we have raw byte data in our dataset.
The BPE-based tokenization also allows for merging tokens that
frequently appear together. Our dataset has multiple zeros within
the structures. These could provide valuable information to the
model when clustered together. We expect the tokenizer to gen-
eralize to such patterns within the data and merge the frequently
occurring tokens. We then pad or truncate the input sequence to a
fixed length. For padding, we can use a special token. The padding
tokens do not carry any inherent meaning during training. For both
slice-based MemBERT and struct-based MemBERT, we tokenize the
data at 2 bytes each. This means that we consider four characters a
single token, given a single byte (i.e.,00-FF) is two characters. We
could also do the tokenization at the byte level, but then it would
be challenging to capture the two-byte dependencies, especially
for pointers and malloc headers. Going up to four bytes could be
beneficial, but the vocabulary size would be too large as there will
be 232 possible combinations. Two bytes offer the best balance be-
tween a moderately large vocabulary of approximately 30k tokens
and the ability to capture the sub-word dependencies.

We pretrain our model in an unsupervised way using masked
language modeling objective, by masking tokens randomly and
having the model guess the masked tokens. Even though the distri-
bution of tokens is seemingly random at a byte level, there should
be meaning within the adjoining tokens at a semantic level. For ex-
ample, pointers follow a specific pattern, and an allocated structure
keeps identical semantics whenever the system allocates the struc-
ture, even though the pointers and other run-time arguments could
change every time. We hope the model can learn this type of high-
level semantics through the masked training approach. Using the
Distilbert model, we limit the input sequence length to 512, given
that most of the structures in our dataset do not exceed the 512
sequence length. We compare the models based on the perplexity
metric during the pretraining stage [8].

3.5 Downstream task and Embedding
compression

3.5.1 Encryption Key Extraction. After training MemBERT, we test
the trained models’ versatility on a downstream task. We extract
slices and structures the same way we did for the pre-training
dataset, and label them with two and five classes, respectively.
We have two classes for the slice-based dataset: non-relevant and
relevant. For the structure-based dataset, we created five different
classes, and they are

• Class 0: Structures that are not interesting to the current
setting

• Class 1: SESSION STATE STRUCTURE
• Class 2: NEW KEYS STRUCTURE
• Class 3: Encryption algorithm name
• Class 4: Encryption key itself

The accompanying metadata consists of the addresses for the five
structures that interest us in this context.

The next step is to extract the embeddings for the training and
testing datasets for both the slice-based MemBERT and struct-based
MemBERT. For this, we consider the sequence embedding for a slice
or a structure by taking the output encoding of [CLS] token. We
train a fully connected neural network classifier 𝐶 , with a hidden
layer of size ℎ, on the output embeddings of MemBERT for three
epochs. After completing the training, we test the network on the
generated embeddings of the test set.

3.5.2 Latent Space compression. We vary compression ratios by
modifying ℎ ∈ {512, 256, 128, 64, 32, 16, 8, 4, 2, 1}. We do this to in-
vestigate how much we can compress the embeddings without
significant performance loss.

4 Results
For the pretraining without considering any metadata informa-
tion, we obtain a perplexity of 2.45 Figure 1a. Furthermore, for
the structure-based model, the perplexity is 6.39 Figure 1b. Per-
plexity is an uncertainty measure that indicates how "perplexed"
the model is about the next token. A lower perplexity would in-
dicate that the model understands the structure and rules in the
given dataset. However, one has to be aware that the perplexity
could often be a weak proxy for the quality of a model and that
we need to test the model on the corresponding downstream tasks
to ascertain the quality of the trained model. We see that the loss
for both models flattens out around three epochs Figure 1. We test
our model’s performance on SSH encryption key extraction down-
stream tasks. We extract the raw representations of the [CLS] token
to run our downstream tasks. These vectors are extracted from the
last layer of MemBERT and have a length of 768. The implemented
fully connected network 𝐶 then compresses this representation to
lengths of 512, 256, 128, 64, 32, 16, 8, 4, 2, and 1. For the slice-based
downstream task, the idea is to predict the presence of an encryp-
tion key within a slice. We explain the results of this downstream
task in subsection 4.1. We can extract more semantic information
using the metadata, pointers, and malloc headers. Therefore, the
struct-based downstream task involves identifying the encryption
key, the encryption algorithm, the NEWKEYS structure, and the
SSH session state structure. The results of this downstream task
are in subsection 4.2.

4.1 Results without any metadata
There are only two classes for the dataset without metadata informa-
tion: relevant(an SSH encryption key is present) and non-relevant
(Absence of SSH encryption key). Since we do not consider the
metadata information in this case, we train our foundation model
on slices or chunks of an arbitrary size (we chose 128 bytes with
an overlap of 64 bytes). We have 4267456 negative (Class 0/non-
relevant) instances and 104977 positive (Class 1/relevant) instances.
A partial key in a chunk does not count as a relevant class. Having a
partial key in a slice could cause problems because a 32-byte partial
key from a 64-byte key would look the same (in randomness) as an
encryption key of size 32. However, we still do not label these slices
with partial keys as relevant. From Table 1, the precision and recall
are above 90% for almost all compressed embedding sizes. We see
that from Figure 2 that the fine-tuned embeddings form a linear
strip with the positive class (Class 1, also the relevant class), having
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(a) Training, evaluation loss, and perplexity curves for slice-based
MemBERT.

(b) Training, evaluation loss and perplexity curves for structure-based
MemBERT.

Figure 1: Loss curves and perplexity for the foundationmodel
on both data with and without metadata information for
three epochs. We see that the perplexity for the generalized
foundation model is comparatively lower that the model
trained on the structures.

embeddings that are closer to zero in both dimensions. The non-
relevant class (Class 0) is more widely spread, which is expected
behavior. This spread of the non-relevant class is due to the wide
variety of data content in the class itself. Also, the SSH encryption
key could be present anywhere within the 128-byte slice, along
with other data. Still, the classifier could identify the slices that
contained an encryption key, further proving the robustness of the
embeddings themselves.

Next, we look at the misclassification examples and we include
the false positives and false negatives for each class and not just
the positive class. The misclassifications are shown in Figure 3 and
the erroneous classifications occur at the decision boundary. We
expect some non-relevant, Class 0, slices to have similar content to

Table 1: Metrics for different embedding sizes without meta-
data. Values in bold show the best performing embedding
sizes for each metric with the standard deviation in paren-
thesis.

Size Accuracy Precision Recall F1-Score
512 99.09 (0.09) 91.60 (1.35) 89.09 (3.77) 90.17 (1.64)
256 99.14 (0.07) 91.77 (1.46) 90.06 (3.55) 90.77 (1.25)
128 99.10 (0.09) 91.86 (1.67) 89.34 (4.18) 90.38 (1.72)
64 99.17 (0.03) 91.50 (0.46) 92.16 (1.54) 91.50 (0.46)
32 99.16 (0.05) 91.16 (1.61) 91.53 (3.05) 91.23 (0.90)
16 99.14 (0.07) 92.10 (1.46) 89.55 (3.09) 90.68 (1.15)
8 99.13 (0.08) 91.50 (1.65) 91.24 (4.03) 90.89 (1.27)
4 99.21 (0.01) 91.35 (0.68) 92.52 (1.09) 91.91 (0.23)
2 99.15 (0.07) 91.65 (1.76) 90.74 (3.67) 91.04 (1.28)
1 99.16 (0.04) 90.75 (1.57) 92.24 (1.96) 91.42 (0.39)

(a) True labels of compressed embedding of size 2.

(b) Predicted labels of compressed embedding of
size 2.

Figure 2: Compressed embeddings of size 2. We use the test
set to generate the embeddings. We see that the true labels
in the test set, slices of data that contain full encryption
keys, are located towards the top left, implying they have
values close to zero for both embedding dimensions. The
scale on the plots is identical across all plots for results on
slices (without metadata).
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(a) False negatives for the relevant and non-
relevant classes on predictions of size 2.

(b) False positives for the relevant and non-
relevant classes on predictions of size 2.

Figure 3: Plot of false positives and false negatives on embed-
dings of size 2.We use the test set to generate the embeddings.
The false negatives of the relevant class (Class 1) are the false
positives of the non-relevant class (Class 0). We use the same
scale as Figure 2 for better comparison. The inset images are
zoomed-in versions of the plots.

that of the relevant class, or the slices could contain partial keys
that cause these false positives.

Our method performs better when comparing our downstream
task results with that of a specialized task such as the SSH Key Ex-
traction by Fellicious et al. [7]. The authors report the best F1-Score
of 88.55, while with our method, our F1-Score across all embedding
sizes has a minimum of 88.81 and a maximum of 92.89. Although
this might seem like an increase of only 4% points, we need to re-
member that the dataset is heavily unbalanced and that our current
method is better at detecting the relevant slices of data.

4.2 Results with metadata
For the dataset labelled using the metadata information, we classify
each identified into five categories: irrelevant, SSH Session struct,
new keys, encryption algorithm name, and encryption key itself.
We compute the metrics for the structure-based method using the
macro average setting. We do not use the weighted metric because
our test dataset is too unbalanced and favors the irrelevant class.

We see an imbalance of almost 99:1 when comparing the irrelevant
class to the relevant classes as shown in Table 2. A weighted metric
would skew the metric in favor of the irrelevant class. Therefore, we
chose the macro averaged precision to convey our results, as this
metric treats all classes equally. And more importantly, the classes
that are relevant to us (keys, encryption algorithms) occur only
once or twice per heap. This means we need to favour the relevant
classes and the macro-averaged metrics help us to do exactly that.
From Table 3 except compressing the data to a single dimension,
almost all the compression sizes preserve the metrics. We see that
all embedding sizes have very good recall with the embedding size
of two having the best precision and F1-Score. The metrics gives
us an aggregated scalar value which is sometimes quite reductive.
Visualizing the data helps us see the decision boundaries where the
false positives or false negatives are located, thus giving us a better
overall view of the data. For this, we choose the embedding size
of two, enabling us to plot the results directly. Choosing a higher
embedding size requires compressing the dimensions to display it.
We could use the TSNE plot or Principal Component Analysis for
dimensionality reduction and plotting. We did not choose either, as
compressing a higher-dimensional space to a much smaller dimen-
sion could introduce artifacts and might not accurately represent
the results visually. We see the true and predicted labels in Figure 4 .
The true labels, especially of the non-relevant class, are spread
wide, and we expected this as the non-relevant class encompasses
many different structures. There is a high probability that some of
these structures are similar to those relevant to us. We can see this
misclassification for the encryption key class where there are a lot
of false positives Figure 4b. This misclassification is due to random
byte sequences from non-relevant classes identified as the encryp-
tion key. We expected misclassifications for the encryption key as
the encryption key is a random string of bytes. So, the model could
confuse itself when seeing a random string. We see most of the false
positives and false negatives at the decision boundary. We can see
the true positives and the decision boundary when looking at Fig-
ure 4b. The cluster of embeddings representing the encryption keys
is very close to the non-relevant class overall. This close clustering
is the reason for the false positives and false negatives, as shown
in Figure 5. The best-separated cluster is the encryption algorithm
name cluster, which has a demarcated boundary. This encryption
algorithm’s names are comprised of text values and have only a
few values, so the boundaries can be demarcated. When looking
at the true positives in Figure 4b, we see the model’s well-defined
decision boundaries.

4.3 Comparison of embeddings from both
foundation models

We compare embeddings generated by fine-tuning the foundation
models trained with (structure-based MemBERT) and without meta-
data information (slice-based MemBERT). We choose only the true
predictions for this, as they show us the decision boundaries of the
respective classifiers. From Figure 2 and Figure 4, we see that the
plot looks very different, although the color scheme of the classes is
kept consistent across all plots. The encryption key class is colored
in cyan, while the non-relevant class is red. In Figure 4b, each class
has its own data cluster. We see that the clustering of the encryption
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Table 2: Label counts for structure classifying task in the test set.

– Non-relevant Session struct New keys Encryption Algorithm Encryption Key
Count 14305261 12523 25046 25046 51618

Table 3: Mean macro averaged metrics for different embed-
ding sizes (Dim) on structures (usingmetadata to create struc-
tures). The standard deviation is given in parentheses and
the values in bold show the best-performing embedding size.

Dim Accuracy Precision Recall F1-Score
512 99.78 (0.02) 88.68 (1.71) 99.91 (0.03) 93.39 (0.92)
256 99.76 (0.04) 87.90 (3.12) 99.92 (0.02) 92.90 (1.84)
128 99.77 (0.03) 88.93 (1.90) 99.93 (0.01) 93.51 (1.08)
64 99.78 (0.02) 89.91 (1.43) 99.91 (0.05) 94.06 (0.83)
32 99.78 (0.03) 89.25 (3.08) 99.92 (0.03) 93.66 (1.81)
16 99.79 (0.02) 90.49 (1.14) 99.93 (0.01) 94.43 (0.65)
8 99.78 (0.03) 89.79 (2.11) 99.93 (0.01) 94.01 (1.19)
4 99.79 (0.01) 90.23 (0.80) 99.93 (0.03) 94.27 (0.41)
2 99.78 (0.02) 90.77 (1.42) 99.91 (0.02) 94.48 (0.77)
1 99.64 (0.16) 81.30 (7.99) 99.50 (0.38) 88.36 (5.72)

key class is very close to the non-relevant class. We expect this
because the non-relevant class contains a lot of random data, and
encryption keys are random data of arbitrary length. We can also
see the same behavior in Figure 2b. The clustering of the encryption
key is very close to that of the non-relevant class. Even though
the key starts at any arbitrary position within the slice along with
other non-relevant data in other positions, we still see that it is
possible to extract encryption keys from the embeddings with high
precision and recall. We could create larger networks or use differ-
ent methods to optimize the performance of the downstream task,
but that is not our primary goal. Our goal is to create MemBERT
and validate its out-of-the-box performance on a downstream task,
which, based on the results shown above, works very well.

5 Ethical Considerations
We consider the ethical side of our experiments. There are no pri-
vacy violations with the data, as the data creation process was com-
pletely synthetic. Our method does not open up a new attack vector,
as MemBERT requires direct access to the memory and information
about process heap boundaries. It is essential to emphasize that
our method and its corresponding models are solely intended for
research purposes and must not be utilized for malicious activities.

6 Conclusion
Our work shows that the foundation models trained on raw mem-
ory data with and without metadata can learn the underlying data
distributions and create embeddings that generalize well to down-
stream tasks. The results on the downstream tasks for retrieving
SSH encryption keys show the robustness of the embeddings cre-
ated by the foundation models. The results also outperform the
previous results on the same datasets. The foundation models cre-
ated here are the first step in the creation of generalized tools for
digital forensics. Our results also show that we could compress

(a) True labels of compressed embedding of size 2.

(b) Predicted labels of compressed embedding of size 2.

Figure 4: Compressed embeddings of size 2. The test set is
used to generate the embeddings. The encryption keys are
spread out more into the non-relevant class cluster while
other classes have clearly defined regions. We can also see
the decision boundaries among the classes in Figure 4b.

the data to two dimensions without losing performance on the
downstream task.
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(a) False negatives on predictions of embedding of size 2. It is mostly
non-relevant classes and encryption keys that are misclassified.

(b) False positives on predictions of embedding of size 2. Here, the
non-relevant classes cross into the space of relevant classes.

Figure 5: Plot of false positives and false negatives on em-
beddings of size 2. The test dataset is used to generate the
embeddings. Most false predictions occur due to the non-
relevant class crossing the decision boundaries of the model.
A few occur due to the encryption keys being detected as
part of the non-relevant class. The scale on all the plots is
the same for all structure-based (using metadata) plots.
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